Shift in microbial communities mediated by vegetation-soil characteristics following subshrub encroachment in a semi-arid grassland

被引:13
|
作者
Guo, Qian [1 ]
Wen, Zhongming [1 ,2 ]
Ghanizadeh, Hossein [3 ]
Zheng, Cheng [1 ]
Fan, Yongming [4 ]
Yang, Xue [1 ]
Yan, Xinhui [1 ]
Li, Wei [2 ]
机构
[1] Northwest A&F Univ, Coll Grassland Agr, Yangling 712100, Shaanxi, Peoples R China
[2] Northwest A&F Univ, Inst Soil & Water Convers, State Key Lab Soil Eros & Dryland Farming Loess P, Yangling 712100, Shaanxi, Peoples R China
[3] Massey Univ, Sch Agr & Environm, Palmerston North 4442, New Zealand
[4] Natl Forestry & Grassland Adm, Cent South Surveying Planning & Design Inst, Changsha 410014, Peoples R China
关键词
Bacterial communities; Community weighted mean traits value; Nitrogen; Phosphorus; Subshrub encroachment; TERM GRAZING EXCLUSION; SHRUB ENCROACHMENT; BACTERIAL COMMUNITIES; PLANT COMMUNITY; LOESS PLATEAU; NITROGEN; DIVERSITY; CARBON; LITTER; DECOMPOSITION;
D O I
10.1016/j.ecolind.2022.108768
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Subshrub encroachment is a frequently occurring phenomenon in arid and semi-arid area, altering the plant community structure and function. However, the effects of the encroachment process on soil bacterial communities are poorly understood on the Loess Plateau, China. In this study, we assessed the changes in soil properties and vegetation characteristics, and their association with alterations in soil bacterial communities in grasslands subjected to different subshrub (Artemisia sacrorum Ledeb.) encroachment intensities (no subshrub encroachment, light subshrub encroachment, moderate subshrub encroachment, and heavy subshrub encroachment). Our results indicated that heavy subshrub encroachment significantly increased plant aboveground biomass and bacterial diversity, but adversely affected plant diversity. Heavy and moderate subshrub encroachment significantly increased soil organic carbon, total nitrogen and water content. Subshrub encroachment at all intensities increased community weighted mean trait values of leaf carbon content, leaf nitrogen content, leaf phosphorus content, specific leaf area, but decreased leaf dry matter content and community functional dispersion. In addition, subshrub encroachment altered the composition of plant and bacterial communities. The partial least squares structural equation model indicated that subshrub encroachment indirectly influenced bacterial communities by affecting vegetation characteristics and soil properties. The determinants of bacterial diversity were vegetation structures (community weighted mean trait values of specific leaf area and plant community composition) and soil properties (organic carbon content, alkaline hydrolysis nitrogen, total phosphorus, available phosphorus, and soil water content). The composition of bacterial community was primarily regulated by plant aboveground biomass and soil properties. Overall, the results of this study improved our understanding of the impact of subshrub encroachment on soil bacteria community on Loess Plateau, and the processes underlying the alterations in the soil bacterial community by subshrub encroachment.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Shift in microbial communities mediated by vegetation-soil characteristics following subshrub encroachment in a semi-arid grassland
    Guo, Qian
    Wen, Zhongming
    Ghanizadeh, Hossein
    Zheng, Cheng
    Fan, Yongming
    Yang, Xue
    Yan, Xinhui
    Li, Wei
    Ecological Indicators, 2022, 137
  • [2] Vegetation-soil water interaction within a dynamical ecosystem model of grassland in semi-arid areas
    Zeng, XD
    Zeng, XB
    Shen, SSP
    Dickinson, RE
    Zeng, QC
    TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2005, 57 (03) : 189 - 202
  • [3] Positive climate feedbacks of soil microbial communities in a semi-arid grassland
    Nie, Ming
    Pendall, Elise
    Bell, Colin
    Gasch, Caley K.
    Raut, Swastika
    Tamang, Shanker
    Wallenstein, Matthew D.
    ECOLOGY LETTERS, 2013, 16 (02) : 234 - 241
  • [4] Soil nitrogen response to shrub encroachment in a degrading semi-arid grassland
    Turpin-Jelfs, Thomas
    Michaelides, Katerina
    Biederman, Joel A.
    Anesio, Alexandre M.
    BIOGEOSCIENCES, 2019, 16 (02) : 369 - 381
  • [5] Parallel shifts in plant and soil microbial communities in response to biosolids in a semi-arid grassland
    Sullivan, TS
    Stromberger, ME
    Paschke, MW
    SOIL BIOLOGY & BIOCHEMISTRY, 2006, 38 (03): : 449 - 459
  • [6] DECOMPOSITION OF MICROBIAL CELL COMPONENTS IN A SEMI-ARID GRASSLAND SOIL
    NAKAS, JP
    KLEIN, DA
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1979, 38 (03) : 454 - 460
  • [7] Effect of Alteration in Precipitation Amount on Soil Microbial Community in a Semi-Arid Grassland
    Li, Junyong
    Benti, Girmaye
    Wang, Dong
    Yang, Zhongling
    Xiao, Rui
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [8] THE SOIL MICROBIAL COMMUNITY IN A SEWAGE-SLUDGE-AMENDED SEMI-ARID GRASSLAND
    DENNIS, GL
    FRESQUEZ, PR
    BIOLOGY AND FERTILITY OF SOILS, 1989, 7 (04) : 310 - 317
  • [9] Simulating seasonal soil water balance in contrasting semi-arid vegetation communities
    Kremer, RG
    Running, SW
    ECOLOGICAL MODELLING, 1996, 84 (1-3) : 151 - 162
  • [10] Soil microbial properties under N and P additions in a semi-arid, sandy grassland
    Li, Lu-Jun
    Zeng, De-Hui
    Yu, Zhan-an
    Fan, Zhi-Ping
    Mao, Rong
    BIOLOGY AND FERTILITY OF SOILS, 2010, 46 (06) : 653 - 658