Error growth in the numerical integration of periodic orbits

被引:15
作者
Calvo, M. [1 ]
Laburta, M. P. [1 ]
Montijano, J. I. [1 ]
Randez, L. [1 ]
机构
[1] Univ Zaragoza, IUMA Dept Matemat Aplicada, E-50009 Zaragoza, Spain
关键词
Geometric integration; Runge-Kutta methods; Invariant preservation; Long-time integration; RUNGE-KUTTA METHODS; RIGID-BODY; SYSTEMS;
D O I
10.1016/j.matcom.2011.05.007
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper is concerned with the long term behaviour of the error generated by one step methods in the numerical integration of periodic flows. Assuming numerical methods where the global error possesses an asymptotic expansion and a periodic flow with the period depending smoothly on the starting point, some conditions that ensure an asymptotically linear growth of the error with the number of periods are given. A study of the error growth of first integrals is also carried out. The error behaviour of Runge-Kutta methods implemented with fixed or variable step size with a smooth step size function, with a projection technique on the invariants of the problem is considered. (c) 2011 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:2646 / 2661
页数:16
相关论文
共 17 条
[1]  
[Anonymous], 1994, APPL MATH MATH COMPU
[2]  
[Anonymous], 1996, Cambridge Monographs on Applied and Computational Mathematics
[3]   Pseudo-symplectic Runge-Kutta methods [J].
Aubry, A ;
Chartier, P .
BIT, 1998, 38 (03) :439-461
[4]   Initializers for RK-Gauss methods based on pseudo-symplecticity [J].
Calvo, M ;
Laburta, MP ;
Montijano, JI .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 189 (1-2) :228-241
[5]   On the preservation of invariants by explicit Runge-Kutta methods [J].
Calvo, M. ;
Hernandez-Abreu, D. ;
Montijano, J. I. ;
Randez, L. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (03) :868-885
[6]   Approximate preservation of quadratic first integrals by explicit Runge-Kutta methods [J].
Calvo, M. ;
Laburta, M. P. ;
Montijano, J. I. ;
Randez, L. .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2010, 32 (03) :255-274
[7]   THE DEVELOPMENT OF VARIABLE-STEP SYMPLECTIC INTEGRATORS, WITH APPLICATION TO THE 2-BODY PROBLEM [J].
CALVO, MP ;
SANZSERNA, JM .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (04) :936-952
[8]   Error growth in the numerical integration of periodic orbits, with application to Hamiltonian and reversible systems [J].
Cano, B ;
SanzSerna, JM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (04) :1391-1417
[9]   Periodic flows, rank-two Poisson structures, and nonholonomic mechanics [J].
Fassò, F ;
Giacobbe, A ;
Sansonetto, N .
REGULAR & CHAOTIC DYNAMICS, 2005, 10 (03) :267-284
[10]   Comparison of splitting algorithms for the rigid body [J].
Fassò, F .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 189 (02) :527-538