Positive solutions of singular boundary value problems on the half-line

被引:12
作者
Wang, Ying [1 ]
Liu, Lishan [1 ,2 ]
Wu, Yonghong [2 ]
机构
[1] Qufu Normal Univ, Dept Math, Qufu 273165, Shandong, Peoples R China
[2] Curtin Univ Technol, Dept Math & Stat, Perth, WA 6845, Australia
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
positive solutions; cone; fixed points; half-line;
D O I
10.1016/j.amc.2007.08.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by using the fixed point theory in the cone with a special norm and space, the existence of positive solutions for a class of singular boundary value problems on the half-line is established. Our results improve many known results including singular and non-singular cases. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:789 / 796
页数:8
相关论文
共 13 条
[1]  
Agarwal R. P., 1994, THEORY SINGULAR BOUN
[2]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[3]   GROUND-STATES OF -DELTA-U=F(U) AND THE EMDEN-FOWLER EQUATION [J].
ATKINSON, FV ;
PELETIER, A .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1986, 93 (02) :103-127
[4]  
Erbe L., 1988, DIFFERENTIAL INTEGRA, V1, P71
[5]   ON THE EXISTENCE OF POSITIVE SOLUTIONS OF ORDINARY DIFFERENTIAL-EQUATIONS [J].
ERBE, LH ;
WANG, HY .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (03) :743-748
[6]  
GUO DJ, 1988, NONL PROBL ABASTR CO
[7]   Positive solutions of operator equations on half-line [J].
Hao, ZC ;
Liang, J ;
Xiao, TJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 314 (02) :423-435
[8]  
KAWANO N, 1993, FUNKC EKVACIOJ-SER I, V36, P557
[9]   Existence of positive solutions for Sturm-Liouville boundary value problems on the half-line [J].
Lian, Hairong ;
Ge, Weigao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 321 (02) :781-792
[10]   Existence theory for nonlinear Fredholm and Volterra integral equations on half-open intervals [J].
Meehan, M ;
O'Regan, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 35 (03) :355-387