Gould-Hopper based Frobenius-Genocchi polynomials and their generalized form

被引:8
作者
Wani, Shahid Ahmad [1 ]
Khan, Subuhi [1 ]
Nahid, Tabinda [1 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh, Uttar Pradesh, India
关键词
Gould-Hopper polynomials; Frobenius-Genocchi polynomials; Monomiality principle; Summation formulae;
D O I
10.1007/s13370-020-00804-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article deals with the introduction of Gould-Hopper based Frobenius-Genocchi polynomials and derivation of their properties. The summation formulae and operational rule for these polynomials are derived. In addition, the integral transforms and operational rules are used to obtain generalized form of Gould-Hopper based Frobenius-Genocchi polynomials.
引用
收藏
页码:1397 / 1408
页数:12
相关论文
共 22 条
  • [1] Appell P., 1926, Fonctions Hypergeometriques et Hyperspheriques: Polynomes d'Hermite
  • [2] Laguerre-type exponentials and generalized Appell polynomials
    Bretti, G
    Cesarano, C
    Ricci, PE
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (5-6) : 833 - 839
  • [3] Laguerre-type Bessel functions
    Cesarano, C
    Germano, B
    Ricci, PE
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2005, 16 (04) : 315 - 322
  • [4] Cesarano C, 2016, ACTA MATH UNIV COMEN, V85, P43
  • [5] Cesarano C., 2014, WSEAS Trans. Math., V13, P925
  • [6] Multi-dimensional Chebyshev polynomials: a non-conventional approach
    Cesarano, Clemente
    [J]. COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS, 2019, 10 (01): : 1 - 19
  • [7] Generalized special functions in the description of fractional diffusive equations
    Cesarano, Clemente
    [J]. COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS, 2019, 10 (01): : 31 - 40
  • [8] Cesarano C, 2015, HACET J MATH STAT, V44, P535
  • [9] Costabile F.A, 2019, DEGRUYTER STUDIES MA, V72
  • [10] Dattoli G, 2006, J COMPUT ANAL APPL, V8, P369