Study on the molecular mechanisms of tetrandrine against pulmonary fibrosis based on network pharmacology, molecular docking and experimental verification

被引:10
|
作者
Li, Jie [1 ,2 ]
Wang, Yi [1 ,2 ]
Wang, Rui [1 ,2 ]
Wu, Meng-Yu [1 ,2 ]
Shan, Jing [1 ,2 ]
Zhang, Ying-Chi [1 ,2 ]
Xu, Hai-Ming [1 ,2 ]
机构
[1] Med Univ, Sch Publ Hlth & Management, Yinchuan 750004, Ningxia, Peoples R China
[2] Key Lab Environm Factors & Chron Dis Control Ningx, 1160 Shengli St, Yinchuan, Ningxia, Peoples R China
基金
中国国家自然科学基金;
关键词
Pulmonary fibrosis; Tetrandrine; Network pharmacology; Target prediction; Molecular docking; Experimental verification; EPITHELIAL-MESENCHYMAL TRANSITION; NATURAL-PRODUCTS; EXPRESSION;
D O I
10.1016/j.heliyon.2022.e10201
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Aims: This study aims to screen the potential targets of tetrandrine (Tet) against pulmonary fibrosis (PF) based on network pharmacological analysis, molecular docking and experimental verification.Main methods: The network pharmacology methods were employed to predict targets, construct Tet-PF-intersection target-pathway networks, and screen the candidate targets. The molecular docking was performed using AutoDockTools1.5.6. TGF-beta 1-induced human lung adenocarcinoma A549 cells were used as an in vitro experimental verification model, taking dexamethasone (Dex) as the positive control, to verify the effects of Tet on the mRNA expression of the candidate targets.Key fndings: Six candidate targets were predicted based on network pharmacology and molecular docking, namely PIK3CA, PDPK1, RAC1, PTK2, KDR, and RPS6KB1. The experimental verification results showed that Dex and Tet presented quite different pharmacological effects. Specifically, compared with the model group, both Dex and Tet (5 mu\M) significantly increased the mRNA expression of PIK3CA and KDR (P < 0.001). Dex up-regulated the mRNA expression of PDPK1 and RAC1, while Tet (1.25 mu\M) down-regulated (P < 0.001). Dex up-regulated the mRNA expression of PTK2, but Tet had no effect. Dex down-regulated RPS6KB1 mRNA expression, while Tet (5 mu\M) up -regulated (P < 0.01).Signifcance: Combined with the results of theoretical calculation and experimental verification, and considering the roles of these targets in the pathogenesis of PF, Tet might antagonize PF by acting on PDPK1 and RAC1. The results of this study will provide scientific reference for the prevention and clinical diagnosis and treatment of PF.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Exploration of the molecular mechanism of tea polyphenols against pulmonary hypertension by integrative approach of network pharmacology, molecular docking, and experimental verification
    Yang, Huan
    Cao, Jun
    Li, Jian-Min
    Li, Cheng
    Zhou, Wen-Wu
    Luo, Jin-Wen
    MOLECULAR DIVERSITY, 2024, 28 (04) : 2603 - 2616
  • [2] Molecular Mechanism of Qingzaojiufei Decoction in the Treatment of Pulmonary Fibrosis based on Network Pharmacology and Molecular Docking
    Zhao, Yilong
    Liu, Bohao
    Li, Yixing
    Chen, Zhe
    Zhu, Xingzhuo
    Tao, Runyi
    Wang, Zhiyu
    Wang, Hongyi
    Zhang, Yanpeng
    Yan, Shuguang
    Gong, Qiuyu
    Zhang, Guangjian
    CURRENT PHARMACEUTICAL DESIGN, 2023, 29 (27) : 2161 - 2176
  • [3] Exploration of the mechanism of luteolin against ischemic stroke based on network pharmacology, molecular docking and experimental verification
    Dong, Rui
    Huang, Renxuan
    Shi, Xiaohua
    Xu, Zhongxin
    Mang, Jing
    BIOENGINEERED, 2021, 12 (02) : 12274 - 12293
  • [4] Exploring the Mechanism of Chuanxiong Rhizoma against Thrombosis Based on Network Pharmacology, Molecular Docking and Experimental Verification
    He, Shasha
    He, Xuhua
    Pan, Shujuan
    Jiang, Wenwen
    MOLECULES, 2023, 28 (18):
  • [5] Effects and mechanisms of Xiaochaihu Tang against liver fibrosis: An integration of network pharmacology, molecular docking and experimental validation
    Wang, Shou-Jia
    Ye, Wen
    Li, Wan-Yi
    Tian, Wen
    Zhang, Meng
    Sun, Yang
    Feng, Ying-Da
    Liu, Chen-Xu
    Liu, Shao-Yuan
    Cao, Wei
    Meng, Jing-Ru
    Li, Xiao-Qiang
    JOURNAL OF ETHNOPHARMACOLOGY, 2023, 303
  • [6] Study on the Potential Mechanism of Semen Strychni against Myasthenia Gravis Based on Network Pharmacology and Molecular Docking with Experimental Verification
    Fang, Pingfei
    Yu, Changwei
    Liu, Jian
    Deng, Gongying
    Zhang, Min
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2022, 2022
  • [7] The molecular mechanism of Ligusticum wallichii for improving idiopathic pulmonary fibrosis A network pharmacology and molecular docking study
    Wu, Xiaozheng
    Li, Wen
    Luo, Zhenliang
    Chen, Yunzhi
    MEDICINE, 2022, 101 (06)
  • [8] Analysis of the potential biological mechanisms of diosmin against renal fibrosis based on network pharmacology and molecular docking approach
    Wen-Man Zhao
    Zhi-Juan Wang
    Rui Shi
    Yuyu Zhu
    Xun-Liang Li
    De-Guang Wang
    BMC Complementary Medicine and Therapies, 23
  • [9] Analysis of the potential biological mechanisms of diosmin against renal fibrosis based on network pharmacology and molecular docking approach
    Zhao, Wen-Man
    Wang, Zhi-Juan
    Shi, Rui
    Zhu, Yuyu
    Li, Xun-Liang
    Wang, De-Guang
    BMC COMPLEMENTARY MEDICINE AND THERAPIES, 2023, 23 (01)
  • [10] Based on network pharmacology, molecular docking and experimental verification to reveal the mechanism of Andrographis paniculata against solar dermatitis
    Deng, Qin
    Chen, Wenyuan
    Deng, Bili
    Chen, Weishi
    Chen, Lei
    Fan, Gengqi
    Wu, Jinglan
    Gao, Yuan
    Chen, Xiaolan
    PHYTOMEDICINE, 2024, 135