In Vivo Stability of Polyurethane-Based Electrospun Vascular Grafts in Terms of Chemistry and Mechanics

被引:19
作者
Gostev, Alexander A. [1 ]
Shundrina, Inna K. [2 ,3 ]
Pastukhov, Vitaliy I. [2 ,3 ]
Shutov, Alexey V. [3 ,5 ]
Chernonosova, Vera S. [4 ]
Karpenko, Andrey A. [1 ]
Laktionov, Pavel P. [1 ,4 ]
机构
[1] Minist Hlth Russian Federat, Meshalkin Natl Med Res Ctr, Novosibirsk 630055, Russia
[2] Russian Acad Sci, Siberian Branch, Vorozhtsov Novosibirsk Inst Organ Chem, Novosibirsk 630090, Russia
[3] Novosibirsk State Univ, Ul Pirogova 2, Novosibirsk 630090, Russia
[4] Russian Acad Sci, Siberian Branch, Inst Chem Biol & Fundamental Med, Novosibirsk 630090, Russia
[5] Russian Acad Sci, Siberian Branch, Lavrentiev Inst Hydrodynam, Novosibirsk 630090, Russia
基金
俄罗斯科学基金会;
关键词
tecoflex; pellethane; gelatin; electrospinning; vascular grafts; polyurethane stability in vivo; NEW-GENERATION; BIOSTABILITY; FABRICATION; SCAFFOLDS; BIOCOMPATIBILITY; ALBUMIN;
D O I
10.3390/polym12040845
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The biostability of the polyurethanes Tecoflex EG-80A and Pellethane 2363-80A, used as basic polymers of the vascular grafts (VGs) produced by electrospinning, as well as the tensile strength of Tecoflex VGs, are studied. Solutions of Tecoflex or Pellethane with gelatin and bivalirudin in 1,1,1,3,3,3-hexafluoroisopropanol are used for VG production. After 1, 12, and 24 weeks of VG implantation in the infrarenal position of the abdominal aorta of Wistar rats, VGs are explanted, fixed in formalin, freed from outer tissues, dialyzed, and dried. The polyurethanes are extracted from VGs by dispersion/extraction in tetrahydrofuran (THF) and freed from the excess of THF-insoluble biopolymers. The stability of polyurethanes is assessed by IR spectroscopy and gel permeation chromatography. Pellethane has emerged to be stable at all experimental points. Tecoflex loses approximately 10% of its molecular weight (both M-n and M-w) after 3 months and restored its initial value within 6 months of its functioning as a graft. Mechanical testing demonstrates a 30% reduction in the tensile strength after 3 months in VG and a 10% increase after 6 months. The stability and mechanical properties of polyurethane-based VGs demonstrate their utility for the reconstitution of damaged arteries.
引用
收藏
页数:11
相关论文
共 43 条
  • [1] [Anonymous], 1998, 71981998 ISO
  • [2] Biodegradable, thermoplastic polyurethane grafts for small diameter vascular replacements
    Bergmeister, Helga
    Seyidova, Nargiz
    Schreiber, Catharina
    Strobl, Magdalena
    Grasl, Christian
    Walter, Ingrid
    Messner, Barbara
    Baudis, Stefan
    Froehlich, Sophie
    Marchetti-Deschmann, Martina
    Griesser, Markus
    di Franco, Matt
    Krssak, Martin
    Liska, Robert
    Schima, Heinrich
    [J]. ACTA BIOMATERIALIA, 2015, 11 : 104 - 113
  • [3] Healing characteristics of electrospun polyurethane grafts with various porosities
    Bergmeister, Helga
    Schreiber, Catharina
    Grasl, Christian
    Walter, Ingrid
    Plasenzotti, Roberto
    Stoiber, Martin
    Bernhard, David
    Schima, Heinrich
    [J]. ACTA BIOMATERIALIA, 2013, 9 (04) : 6032 - 6040
  • [4] The study of the surface layer of 3D-matrices for tissue engineering
    Chernonosova V.S.
    Kvon R.I.
    Kiseleva E.V.
    Stepanova A.O.
    Laktionov P.P.
    [J]. Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry, 2017, 11 (2) : 139 - 145
  • [5] Study of hemocompatibility and endothelial cell interaction of tecoflex-based electrospun vascular grafts
    Chernonosova, Vera S.
    Gostev, Alexander A.
    Chesalov, Yuriy A.
    Karpenko, Andrey A.
    Karaskov, Alexander M.
    Laktionov, Pavel P.
    [J]. INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2019, 68 (1-3) : 34 - 43
  • [6] Mechanical Properties and Biological Behavior of 3D Matrices Produced by Electrospinning from Protein-Enriched Polyurethane
    Chernonosova, Vera S.
    Gostev, Alexander A.
    Gao, Yun
    Chesalov, Yuriy A.
    Shutov, Alexey, V
    Pokushalov, Evgeniy A.
    Karpenko, Andrey A.
    Laktionov, Pavel P.
    [J]. BIOMED RESEARCH INTERNATIONAL, 2018, 2018
  • [7] Human serum albumin in electrospun PCL fibers: structure, release, and exposure on fiber surface
    Chernonosova, Vera S.
    Kvon, Ren I.
    Stepanova, Alena O.
    Larichev, Yurii V.
    Karpenko, Andrey A.
    Chelobanov, Boris P.
    Kiseleva, Elena V.
    Laktionov, Pavel P.
    [J]. POLYMERS FOR ADVANCED TECHNOLOGIES, 2017, 28 (07) : 819 - 827
  • [8] Heart valve scaffold fabrication: Bioinspired control of macro-scale morphology, mechanics and micro-structure
    D'Amore, Antonio
    Luketich, Samuel K.
    Raffa, Giuseppe M.
    Olia, Salim
    Menallo, Giorgio
    Mazzola, Antonino
    D'Accardi, Flavio
    Grunberg, Tamir
    Gu, Xinzhu
    Pilato, Michele
    Kameneva, Marina V.
    Badhwar, Vinay
    Wagner, William R.
    [J]. BIOMATERIALS, 2018, 150 : 25 - 37
  • [9] Farah S., 2015, Composites and Nanocomposites, P143, DOI DOI 10.1016/B978-0-323-31306-3.00008-7
  • [10] Firoozi Saman, 2017, Nanomedicine Research Journal, V2, P131, DOI 10.22034/nmrj.2017.63166.1067