Crystallization kinetics in Cu46Zr45Al7Y2 bulk metallic glass by differential scanning calorimetry (DSC)

被引:111
作者
Qiao, J. C. [1 ]
Pelletier, J. M. [1 ]
机构
[1] Univ Lyon, MATEIS, UMR CNRS5510, INSA Lyon, F-69621 Villeurbanne, France
关键词
Metallic glass; Cu46Zr45Al7Y2; Crystallization kinetics; Kissinger and Johnson-Mehl-Avrami methods; Activation energy; SUPERCOOLED LIQUID REGION; ISOTHERMAL CRYSTALLIZATION; THERMAL-STABILITY; FORMING ABILITY; NONISOTHERMAL CRYSTALLIZATION; ISOCHRONAL CRYSTALLIZATION; AMORPHOUS-ALLOYS; MATRIX COMPOSITE; ZR-TI; BEHAVIOR;
D O I
10.1016/j.jnoncrysol.2010.12.071
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Crystallization transformation kinetics in isothermal and non-isothermal (continuous heating) modes were investigated in Cu46Zr45Al7Y2 bulk metallic glass by differential scanning calorimetry (DSC). In isochronal heating process, activation energy for crystallization at different crystallized volume fraction is analyzed by Kissinger method. Average value for crystallization in Cu46Zr45Al7Y2 bulk metallic glass is 361 kJ/mol in isochronal process. Isothermal transformation kinetics was described by the Johnson-Mehl-Avrami (JMA) model. Avrami exponent n ranges from 2.4 to 2.8. The average value, around 2.5, indicates that crystallization mechanism is mainly three-dimensional diffusion-controlled. Activation energy is 484 kJ/mol in isothermal transformation for Cu46Zr45Al7Y2 bulk metallic glass. These different results were discussed using kinetic models. In addition, average activation energy of Cu46Zr45Al7Y2 bulk metallic glass calculated using Arrhenius equation is larger than the value calculated by the Kissinger method in non-isothermal conditions. The reason lies in the nucleation determinant in the non-isothermal mode, since crystallization begins at low temperature. Moreover, both nucleation and growth are involved with the same significance during isothermal crystallization. Therefore, the energy barrier in isothermal annealing mode is higher than that of isochronal conditions. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2590 / 2594
页数:5
相关论文
共 62 条
[1]   Kinetic study of non-isothermal crystallization in Fe78Si9B13 metallic glass [J].
Al-Heniti, S. H. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 484 (1-2) :177-184
[2]   Crystallization kinetics of Fe73.5-xMnxCu1Nb3Si13.5B9 (x=0, 1, 3, 5, 7) amorphous alloys [J].
Bayri, N. ;
Izgi, T. ;
Gencer, H. ;
Sovak, P. ;
Gunes, M. ;
Atalay, S. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2009, 355 (01) :12-16
[3]   Glass-forming ability and fragility parameter of amorphous Fe67Co9.5Nd3Dy0.5B20 [J].
Biswas, K. ;
Venkataraman, S. ;
Zhang, W. Y. ;
Ram, S. ;
Eckert, J. .
JOURNAL OF APPLIED PHYSICS, 2006, 100 (02)
[4]   Kinetic study of isothermal crystallization in amorphous Al33Ni16Zr51 produced by mechanical alloying [J].
Braganti, JP ;
Held, O ;
Kuhnast, FA ;
Illekova, E .
THERMOCHIMICA ACTA, 2000, 362 (1-2) :71-78
[5]   Materials science - Bulk metallic glasses [J].
Byrne, Cormac J. ;
Eldrup, Morten .
SCIENCE, 2008, 321 (5888) :502-503
[6]   Glass forming ability, non-isothermal crystallization kinetics, and mechanical property of Zr61.5Al10.7Cu13.65Ni14.15 metallic glass [J].
Cai, A. H. ;
An, W. K. ;
Luo, Y. ;
Li, T. L. ;
Li, X. S. ;
Xiong, X. ;
Liu, Y. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 490 (1-2) :642-646
[7]   Second amorphous-to-crystalline phase transformation in Cu60Ti20Zr20 bulk metallic glass [J].
Cao, Q. P. ;
Li, J. F. ;
Zhang, P. N. ;
Horsewell, A. ;
Jiang, J. Z. ;
Zhou, Y. H. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (24)
[8]   Crystallization kinetics of the Zr55.9Cu18.6Ta8Al7.5Ni10 bulk metallic glass matrix composite under isothermal conditions [J].
Chen, Qi ;
Liu, Lin ;
Chan, K. C. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2006, 419 (1-2) :71-75
[9]   A new criterion for evaluating the glass-forming ability of bulk metallic glasses [J].
Chen, Qingjun ;
Shen, Jun ;
Zhang, Deliang ;
Fan, Hongbo ;
Sun, Jianfei ;
McCartney, D. G. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2006, 433 (1-2) :155-160
[10]  
DING Y H, 2009, J ALLOY COMPD, V475, P207