A machine learning framework for the evaluation of myocardial rotation in patients with noncompaction cardiomyopathy

被引:1
作者
Tavares de Melo, Marcelo Dantas [1 ]
Batista Araujo-Filho, Jose de Arimateia [2 ]
Barbosa, Jose Raimundo [3 ]
Rocon, Camila [1 ,2 ]
Miranda Regis, Carlos Danilo [3 ]
Felix, Alex dos Santos [4 ]
Kalil Filho, Roberto [1 ,2 ]
Bocchi, Edimar Alcides [1 ]
Hajjar, Ludhmila Abrahao [1 ]
Tabassian, Mahdi [5 ]
D'hooge, Jan [5 ]
Cury Salemi, Vera Maria [1 ,2 ]
机构
[1] Univ Sao Paulo, Heart Inst InCor Hosp Clin, Fac Med, Sao Paulo, Brazil
[2] Sirio Libanes Hosp, Sao Paulo, Brazil
[3] Fed Inst Paraiba, Joao Pessoa, Paraiba, Brazil
[4] Natl Inst Cardiol, Rio De Janeiro, Brazil
[5] Univ Leuven, Dept Cardiovasc Sci, Leuven, Belgium
来源
PLOS ONE | 2021年 / 16卷 / 11期
关键词
VENTRICULAR NON-COMPACTION; SYSTOLIC DYSFUNCTION; TWIST; TIME; ASSOCIATION; DIAGNOSIS; MARKER;
D O I
10.1371/journal.pone.0260195
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Aims Noncompaction cardiomyopathy (NCC) is considered a genetic cardiomyopathy with unknown pathophysiological mechanisms. We propose to evaluate echocardiographic predictors for rigid body rotation (RBR) in NCC using a machine learning (ML) based model. Methods and results Forty-nine outpatients with NCC diagnosis by echocardiography and magnetic resonance imaging (21 men, 42.8 +/- 14.8 years) were included. A comprehensive echocardiogram was performed. The layer-specific strain was analyzed from the apical two-, three, four-chamber views, short axis, and focused right ventricle views using 2D echocardiography (2DE) software. RBR was present in 44.9% of patients, and this group presented increased LV mass indexed (118 +/- 43.4 vs. 94.1 +/- 27.1g/m(2), P = 0.034), LV end-diastolic and end-systolic volumes (P < 0.001), E/e' (12.2 +/- 8.68 vs. 7.69 +/- 3.13, P = 0.034), and decreased LV ejection fraction (40.7 +/- 8.71 vs. 58.9 +/- 8.76%, P < 0.001) when compared to patients without RBR. Also, patients with RBR presented a significant decrease of global longitudinal, radial, and circumferential strain. When ML model based on a random forest algorithm and a neural network model was applied, it found that twist, NC/C, torsion, LV ejection fraction, and diastolic dysfunction are the strongest predictors to RBR with accuracy, sensitivity, specificity, area under the curve of 0.93, 0.99, 0.80, and 0.88, respectively. Conclusion In this study, a random forest algorithm was capable of selecting the best echocardiographic predictors to RBR pattern in NCC patients, which was consistent with worse systolic, diastolic, and myocardium deformation indices. Prospective studies are warranted to evaluate the role of this tool for NCC risk stratification.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Genetic Variation in Titin in Patients with Hypertrophic and Noncompaction Cardiomyopathy
    Chakova, N. N.
    Shulinski, R. S.
    Komissarova, S. M.
    Dolmatovich, T. V.
    Niyazova, S. S.
    Mazur, O. Ch.
    Ivanova, A. S.
    Liaudanski, A. D.
    RUSSIAN JOURNAL OF GENETICS, 2023, 59 (07) : 706 - 718
  • [12] Prognostic prediction of left ventricular myocardial noncompaction using machine learning and cardiac magnetic resonance radiomics
    Han, Pei-Lun
    Jiang, Ze-Kun
    Gu, Ran
    Huang, Shan
    Jiang, Yu
    Yang, Zhi-Gang
    Li, Kang
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2023, 13 (10) : 6468 - +
  • [13] A very rare case of coexistence of ventricular noncompaction cardiomyopathy, myocardial bridging and atherosclerosis
    Erdogan, Ercan
    Akkaya, Mehmet
    Bacaksiz, Ahmet
    Tasal, Abdurrahman
    Sevgili, Emrah
    POSTEPY W KARDIOLOGII INTERWENCYJNEJ, 2013, 9 (02): : 176 - 178
  • [14] Evaluation of the extent of left ventricular trabeculations and association with imaging findings and clinical outcomes in pediatric patients with possible left ventricular noncompaction cardiomyopathy
    Milligan, Ian
    Hashemi, Sassan
    Sallee, Denver
    Sachdeva, Ritu
    Michelfelder, Erik
    Slesnick, Timothy
    Wilson, Hunter
    PROGRESS IN PEDIATRIC CARDIOLOGY, 2024, 73
  • [15] A Machine Learning Approach to Gene Expression in Hypertrophic Cardiomyopathy
    Pavic, Jelena
    Zivanovic, Marko
    Tanaskovic, Irena
    Pavic, Ognjen
    Stankovic, Vesna
    Virijevic, Katarina
    Mladenovic, Tamara
    Kosaric, Jelena
    Milicevic, Bogdan
    Qamar, Safi Ur Rehman
    Velicki, Lazar
    Novakovic, Ivana
    Preveden, Andrej
    Popovic, Dejana
    Tesic, Milorad
    Seman, Stefan
    Filipovic, Nenad
    PHARMACEUTICALS, 2024, 17 (10)
  • [16] Myocardial Histopathology in Patients With Obstructive Hypertrophic Cardiomyopathy
    Cui, Hao
    Schaff, Hartzell, V
    Carvalho, Juliano Lentz
    Nishimura, Rick A.
    Geske, Jeffrey B.
    Dearani, Joseph A.
    Lahr, Brian D.
    Lee, Alexander T.
    Bos, J. Martijn
    Ackerman, Michael J.
    Ommen, Steve R.
    Maleszewski, Joseph J.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2021, 77 (17) : 2159 - 2170
  • [17] Prediction of Genotype Positivity in Patients With Hypertrophic Cardiomyopathy Using Machine Learning
    Liang, Lusha W.
    Fifer, Michael A.
    Hasegawa, Kohei
    Maurer, Mathew S.
    Reilly, Muredach P.
    Shimada, Yuichi J.
    CIRCULATION-GENOMIC AND PRECISION MEDICINE, 2021, 14 (03): : 294 - 302
  • [18] Evaluation of left ventricular function, rotation, twist and untwist in patients with hypertrophic cardiomyopathy
    He, Xue-Wei
    Song, Ze-Zhou
    EXPERIMENTAL & CLINICAL CARDIOLOGY, 2013, 18 (01) : E47 - E49
  • [19] Subtypes and Mechanisms of Hypertrophic Cardiomyopathy Proposed by Machine Learning Algorithms
    Glavaski, Mila
    Preveden, Andrej
    Jakovljevic, Dorde
    Filipovic, Nenad
    Velicki, Lazar
    LIFE-BASEL, 2022, 12 (10):
  • [20] APPLICATION OF MACHINE LEARNING FOR DETECTION OF HYPERTROPHIC CARDIOMYOPATHY PATIENTS FROM ECHOCARDIOGRAM MEASUREMENTS
    Farahani, Nasibeh Zanjirani
    Enayati, Moein
    Sundaram, Divaakar Siva Baala
    Damani, Devanshi
    Kaggal, Vinod C.
    Zacher, April L.
    Geske, Jeffrey B.
    Kane, Garvan
    Arunachalam, Shivaram Poigai
    Pasupathy, Kalyan
    Arruda-Olson, Adelaide M.
    PROCEEDINGS OF THE 2021 DESIGN OF MEDICAL DEVICES CONFERENCE (DMD2021), 2021,