On a class of projectively flat metrics with constant flag curvature

被引:48
作者
Shen, Z. [1 ]
Yidirim, G. Civi [2 ]
机构
[1] Indiana Univ Purdue Univ, Dept Math Sci, Indianapolis, IN 46202 USA
[2] Istanbul Tech Univ, Fac Sci & Letters, Dept Math, TR-80626 Istanbul, Turkey
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2008年 / 60卷 / 02期
基金
美国国家科学基金会;
关键词
D O I
10.4153/CJM-2008-021-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we find equations that characterize locally projectively flat Finsler metrics in the form F = (alpha + beta)(2)/alpha, where alpha = root a(ij)y(i)y(j) is a Riemannian metric and beta = b(i)y(i) is a 1-form. Then we completely determine the local structure of those with constant flag curvature.
引用
收藏
页码:443 / 456
页数:14
相关论文
共 14 条
[2]  
BRYANT R., 1997, Selecta Mathematica, V3, P161
[3]  
BRYANT R, 1996, FINSLER GEOMETRY CON, V196, P27
[4]  
Bryant RL, 2002, HOUSTON J MATH, V28, P221
[5]   On the flag curvature of Finsler metrics of scalar curvature [J].
Chen, XY ;
Mo, XH ;
Shen, ZM .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 68 :762-780
[6]   Projectively flat Finsler metrics with almost isotropic S-curvature [J].
Cheng, XY ;
Shen, ZM .
ACTA MATHEMATICA SCIENTIA, 2006, 26 (02) :307-313
[7]  
Chern Shiing-Shen, 2005, Riemann-Finsler Geometry, V6
[8]   On the geometries, in which the tangents are tersests [J].
Hamel, G .
MATHEMATISCHE ANNALEN, 1903, 57 :231-264
[9]  
Kitayama M., 1995, J HOKKAIDO U ED A, V46, P1
[10]  
Matsumoto M., 1998, TENSOR, V60, P123