BISTABLE AND OSCILLATORY DYNAMICS OF NICHOLSON'S BLOWFLIES EQUATION WITH ALLEE EFFECT

被引:3
作者
Chang, Xiaoyuan [1 ]
Shi, Junping [2 ]
机构
[1] Harbin Univ Sci & Technol, Dept Math, Harbin 150080, Heilongjiang, Peoples R China
[2] William & Mary, Dept Math, Williamsburg, VA 23187 USA
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2022年 / 27卷 / 08期
基金
美国国家科学基金会;
关键词
Delayed differential equation; modified Nicholson's blowflies equation; Allee effect; stability; Hopf bifurcation; DELAY-DIFFERENTIAL EQUATIONS; GLOBAL DYNAMICS; MODEL; POPULATION;
D O I
10.3934/dcdsb.2021242
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The bistable dynamics of a modified Nicholson's blowflies delay differential equation with Allee effect is analyzed. The stability and basins of attraction of multiple equilibria are studied by using Lyapunov-LaSalle invariance principle. The existence of multiple periodic solutions are shown using local and global Hopf bifurcations near positive equilibria, and these solutions generate long transient oscillatory patterns and asymptotic stable oscillatory patterns.
引用
收藏
页码:4551 / 4572
页数:22
相关论文
共 42 条
[21]   Asymptotic Behavior of a Delay Differential Neoclassical Growth Model [J].
Matsumoto, Akio ;
Szidarovszky, Ferenc .
SUSTAINABILITY, 2013, 5 (02) :440-455
[22]   Delay differential neoclassical growth model [J].
Matsumoto, Akio ;
Szidarovszky, Ferenc .
JOURNAL OF ECONOMIC BEHAVIOR & ORGANIZATION, 2011, 78 (03) :272-289
[23]   Long-term transients and complex dynamics of a stage-structured population with time delay and the Allee effect [J].
Morozov, A. Yu. ;
Banerjee, M. ;
Petrovskii, S. V. .
JOURNAL OF THEORETICAL BIOLOGY, 2016, 396 :116-124
[24]   Long transients in ecology: Theory and applications [J].
Morozov, Andrew ;
Abbott, Karen ;
Cuddington, Kim ;
Francis, Tessa ;
Gellner, Gabriel ;
Hastings, Alan ;
Lai, Ying-Cheng ;
Petrovskii, Sergei ;
Scranton, Katherine ;
Zeeman, Mary Lou .
PHYSICS OF LIFE REVIEWS, 2020, 32 :1-40
[25]   AN OUTLINE OF THE DYNAMICS OF ANIMAL POPULATIONS [J].
NICHOLSON, AJ .
AUSTRALIAN JOURNAL OF ZOOLOGY, 1954, 2 (01) :9-65
[26]   Multiple limit cycles in the chemostat with variable yield [J].
Pilyugin, SS ;
Waltman, P .
MATHEMATICAL BIOSCIENCES, 2003, 182 (02) :151-166
[27]   Novel stability criteria on nonlinear density-dependent mortality Nicholson's blowflies systems in asymptotically almost periodic environments [J].
Qian, Chaofan ;
Hu, Yuhui .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
[28]   Domain-decomposition method for the global dynamics of delay differential equations with unimodal feedback [J].
Rost, Gergely ;
Wu, Jianhong .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 463 (2086) :2655-2669
[29]  
Ruan S, 2006, NATO SCI SER II MATH, P477
[30]   Global dynamics of Nicholson's blowflies equation revisited: Onset and termination of nonlinear oscillations [J].
Shu, Hongying ;
Wang, Lin ;
Wu, Jianhong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (09) :2565-2586