The Association of the Xeroderma Pigmentosum Group D DNA Helicase (XPD) with Transcription Factor IIH Is Regulated by the Cytosolic Iron-Sulfur Cluster Assembly Pathway

被引:28
|
作者
Vashisht, Ajay A. [1 ]
Yu, Clarissa C. [1 ]
Sharma, Tanu [1 ]
Ro, Kevin [1 ]
Wohlschlegel, James A. [1 ]
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Dept Biol Chem, Los Angeles, CA 90095 USA
基金
美国国家卫生研究院;
关键词
PROTEIN IDENTIFICATION TECHNOLOGY; REPAIR; GENE; HOMEOSTASIS; METABOLISM; CANCER; CELLS;
D O I
10.1074/jbc.M115.650762
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Xeroderma pigmentosum groupD(XPD) helicase is a component of the transcription factor IIH (TFIIH) transcription complex and plays essential roles in transcription and nucleotide excision repair. Although iron-sulfur (Fe-S) cluster binding by XPD is required for activity, the process mediating Fe-S cluster assembly remains poorly understood. We recently identified a cytoplasmic Fe-S cluster assembly (CIA) targeting complex composed of MMS19, CIAO1, and FAM96B that is required for the biogenesis of extramitochondrial Fe-S proteins including XPD. Here, we use XPD as a prototypical Fe-S protein to further characterize how Fe-S assembly is facilitated by the CIA targeting complex. Multiple lines of evidence indicate that this process occurs in a stepwise fashion in which XPD acquires a Fe-S cluster from the CIA targeting complex before assembling into TFIIH. First, XPD was found to associate in a mutually exclusive fashion with either TFIIH or the CIA targeting complex. Second, disrupting Fe-S cluster assembly on XPD by either 1) depleting cellular iron levels or 2) utilizing XPD mutants defective in either Fe-S cluster or CIA targeting complex binding blocks Fe-S cluster assembly and prevents XPD incorporation into TFIIH. Finally, subcellular fractionation studies indicate that the association of XPD with the CIA targeting complex occurs in the cytoplasm, whereas its association with TFIIH occurs largely in the nucleus where TFIIH functions. Together, these data establish a sequential assembly process for Fe-S assembly on XPD and highlight the existence of quality control mechanisms that prevent the incorporation of immature apoproteins into their cellular complexes.
引用
收藏
页码:14218 / 14225
页数:8
相关论文
共 3 条
  • [1] Iron-regulated assembly of the cytosolic iron-sulfur cluster biogenesis machinery
    Fan, Xiaorui
    Barshop, William D.
    Vashisht, Ajay A.
    Pandey, Vijaya
    Leal, Stephanie
    Rayatpisheh, Shima
    Jami-Alahmadi, Yasaman
    Sha, Jihui
    Wohlschlegel, James A.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2022, 298 (07)
  • [2] The cytosolic iron-sulfur cluster assembly (CIA) pathway is required for replication stress tolerance of cancer cells to Chk1 and ATR inhibitors
    Redwood, Abena B.
    Zhang, Xiaomei
    Seth, Sahil B.
    Ge, Zhongqi
    Bindeman, Wendy E.
    Zhou, Xinhui
    Sinha, Vidya C.
    Heffernan, Timothy P.
    Piwnica-Worms, Helen
    NPJ BREAST CANCER, 2021, 7 (01)
  • [3] The DUF59 Family Gene AE7 Acts in the Cytosolic Iron-Sulfur Cluster Assembly Pathway to Maintain Nuclear Genome Integrity in Arabidopsis
    Luo, Dexian
    Bernard, Delphine G.
    Balk, Janneke
    Hai, Huang
    Cui, Xiaofeng
    PLANT CELL, 2012, 24 (10) : 4135 - 4148