Diffusivity of native defects in GaN

被引:248
作者
Limpijumnong, S
Van de Walle, CG
机构
[1] Xerox Corp, Palo Alto Res Ctr, Palo Alto, CA 94304 USA
[2] Suranaree Univ Technol, Inst Sci, Sch Phys, Nakhon Ratchasima, Thailand
来源
PHYSICAL REVIEW B | 2004年 / 69卷 / 03期
关键词
D O I
10.1103/PhysRevB.69.035207
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The diffusion of relevant native point defects in wurtzite GaN crystals is investigated using first-principles density-functional pseudopotential calculations. Our reexamination of the ground state of the defects, using a higher level of convergence than was previously used, yields results in good agreement with earlier published results [J. Neugebauer and C. G. Van de Walle, Phys. Rev. B 50, 8067 (1994)]. Gallium interstitials are stable at the octahedral interstitial site and can occur in 1+, 2+ (metastable), or 3+ charge states. They migrate via an interstitialcy mechanism with an unexpectedly low barrier of 0.9 eV, consistent with the annealing of the L5 signal in electron-paramagnetic-resonance experiments [K. H. Chow , Phys. Rev. Lett. 85, 2761 (2000)]. For the nitrogen interstitial the ground-state configuration is a split interstitial, occurring in charge states ranging from 1- to 3+. Migration also proceeds via an interstitialcy mechanism, with barriers of 2.4 eV or lower, depending on the charge state. The nitrogen vacancy has two stable charge states 1+ and 3+. The migration barrier for V-N(+) is high (4.3 eV), while the migration barrier for V-N(3+) is significantly lower, at 2.6 eV, consistent with recent positron-annihilation experiments [S. Hautakangas , Phys. Rev. Lett. 90, 137402 (2003)]. The gallium vacancy, finally, can occur in charge states 0, 1-, 2-, and 3-, and migrates with a barrier of 1.9 eV. For all these defects the lowest-energy migration path results in motion both parallel and perpendicular to the c axis; no anisotropy in the diffusion will therefore be observed. Applications to point-defect-assisted impurity diffusion will also be discussed.
引用
收藏
页数:11
相关论文
共 33 条
  • [11] LANNOO M, 1981, POINT DEFECTS SEMICO, V1, P219
  • [12] Optical detection of magnetic resonance in electron-irradiated GaN
    Linde, M
    Uftring, SJ
    Watkins, GD
    Harle, V
    Scholz, F
    [J]. PHYSICAL REVIEW B, 1997, 55 (16): : 10177 - 10180
  • [13] NON-LINEAR IONIC PSEUDOPOTENTIALS IN SPIN-DENSITY-FUNCTIONAL CALCULATIONS
    LOUIE, SG
    FROYEN, S
    COHEN, ML
    [J]. PHYSICAL REVIEW B, 1982, 26 (04): : 1738 - 1742
  • [14] Point-defect complexes and broadband luminescence in GaN and AlN
    Mattila, T
    Nieminen, RM
    [J]. PHYSICAL REVIEW B, 1997, 55 (15): : 9571 - 9576
  • [15] SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS
    CHADI, DJ
    [J]. PHYSICAL REVIEW B, 1977, 16 (04): : 1746 - 1747
  • [16] In situ studies of the effect of silicon on GaN growth modes
    Munkholm, A
    Stephenson, GB
    Eastman, JA
    Auciello, O
    Murty, MVR
    Thompson, C
    Fini, P
    Speck, JS
    DenBaars, SP
    [J]. JOURNAL OF CRYSTAL GROWTH, 2000, 221 (1-4) : 98 - 105
  • [17] Neugebauer J, 1996, MATER RES SOC SYMP P, V395, P645
  • [18] Neugebauer J, 1996, FESTKOR A S, V35, P25
  • [19] Gallium vacancies and the yellow luminescence in GaN
    Neugebauer, J
    Van de Walle, CG
    [J]. APPLIED PHYSICS LETTERS, 1996, 69 (04) : 503 - 505
  • [20] ATOMIC GEOMETRY AND ELECTRONIC-STRUCTURE OF NATIVE DEFECTS IN GAN
    NEUGEBAUER, J
    VAN DE WALLE, CG
    [J]. PHYSICAL REVIEW B, 1994, 50 (11): : 8067 - 8070