Recent progress on porous carbon and its derivatives from plants as advanced electrode materials for supercapacitors

被引:285
作者
Jiang, Guosai [1 ]
Senthil, Raja Arumugam [1 ]
Sun, Yanzhi [1 ]
Kumar, Thangvelu Rajesh [1 ]
Pan, Junqing [1 ]
机构
[1] Beijing Univ Chem Technol, Coll Chem, Beijing Adv Innovat Ctr Soft Matter Sci & Engn, State Key Lab Chem Resources Engn, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
Plant-derived carbon; Porous carbon; Heteroatom-doping carbon; Carbon composite; HIGH-PERFORMANCE SUPERCAPACITORS; BIOMASS-DERIVED CARBON; DOPED MICROPOROUS CARBON; HIGH-ENERGY DENSITY; ACTIVATED CARBON; PORE STRUCTURE; POMELO PEEL; LIGNOCELLULOSIC BIOMASS; ULTRAHIGH CAPACITANCE; COTTON STALK;
D O I
10.1016/j.jpowsour.2021.230886
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Porous carbon (PC) materials have been extensively employed as electrodes in the energy storage field owing to their large specific surface area (SSA), high durability and unique inner structure. Ulteriorly, the development of new energy-storage systems definitely demands sustainable, low-priced and environmentally nonharmful elec-trode materials. Many researchers have shifted attention to plant materials and made many efforts, considering that the precursors are rich in carbon elements, easy to scale up, and possess unique channel structures. This review makes retrospect about the recent researches on plant-derived carbon for supercapacitor application, particularly focusing on the influence of structure and components of materials on electrochemical performance. Firstly, the synthesis methods, including physical and chemical activation are discussed in detail. Secondly, multi-component carbon materials, especially heteroatom doping and composite carbon for improving electro-chemical performance are also revealed systematically, which contribute to design electrode materials with adjustable pore-size distribution and eligible structure for rapid transport of electrolyte ions and electrons, and hopefully can provide valuable guidance for making full use of the characteristics of plant materials for energy storage. Finally, we put forward current challenges and development trends based on plant-derived carbon materials for supercapacitor application.
引用
收藏
页数:19
相关论文
共 231 条
[1]   A review of data-driven building energy consumption prediction studies [J].
Amasyali, Kadir ;
El-Gohary, Nora M. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 81 :1192-1205
[2]   Extremely pseudocapacitive interface engineered CoO@3D-NRGO hybrid anodes for high energy/ power density and ultralong life lithium-ion batteries [J].
Avvaru, Venkata Sai ;
Jimenez Fernandez, Ivan ;
Feng, Wenliang ;
Hinder, Steven J. ;
Castillo Rodriguez, Miguel ;
Etacheri, Vinodkumar .
CARBON, 2021, 171 :869-881
[3]   Preparation and application of cellulose gel in flexible supercapacitors [J].
Bai, Yan ;
Zhao, Weiwei ;
Bi, Shuaihang ;
Liu, Shujuan ;
Huang, Wei ;
Zhao, Qiang .
JOURNAL OF ENERGY STORAGE, 2021, 42 (42)
[4]   The biomass distribution on Earth [J].
Bar-On, Yinon M. ;
Phillips, Rob ;
Milo, Ron .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (25) :6506-6511
[5]   Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review [J].
Bi, Zhihong ;
Kong, Qingqiang ;
Cao, Yufang ;
Sun, Guohua ;
Su, Fangyuan ;
Wei, Xianxian ;
Li, Xiaoming ;
Ahmad, Aziz ;
Xie, Lijing ;
Chen, Cheng-Meng .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (27) :16028-16045
[6]   From dead leaves to high energy density supercapacitors [J].
Biswal, Mandakini ;
Banerjee, Abhik ;
Deo, Meenal ;
Ogale, Satishchandra .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (04) :1249-1259
[7]   Microwave-assisted conversion of biomass wastes to pseudocapacitive mesoporous carbon for high-performance supercapacitor [J].
Bo, Xiangkun ;
Xiang, Kun ;
Zhang, Yu ;
Shen, Yu ;
Chen, Shanyong ;
Wang, Yongzheng ;
Xie, Mingjiang ;
Guo, Xuefeng .
JOURNAL OF ENERGY CHEMISTRY, 2019, 39 :1-7
[8]   Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage [J].
Bonaccorso, Francesco ;
Colombo, Luigi ;
Yu, Guihua ;
Stoller, Meryl ;
Tozzini, Valentina ;
Ferrari, Andrea C. ;
Ruoff, Rodney S. ;
Pellegrini, Vittorio .
SCIENCE, 2015, 347 (6217)
[9]   Revising the Concept of Pore Hierarchy for Ionic Transport in Carbon Materials for Supercapacitors [J].
Borchardt, Lars ;
Leistenschneider, Desiree ;
Haase, Juergen ;
Dvoyashkin, Muslim .
ADVANCED ENERGY MATERIALS, 2018, 8 (24)
[10]   Facile Synthesis of Three-Dimensional Heteroatom-Doped and Hierarchical Egg-Box-Like Carbons Derived from Moringa oleifera Branches for High-Performance Supercapacitors [J].
Cai, Yijin ;
Luo, Ying ;
Xiao, Yong ;
Zhao, Xiao ;
Liang, Yeru ;
Hu, Hang ;
Dong, Hanwu ;
Sun, Luyi ;
Liu, Yingliang ;
Zheng, Mingtao .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (48) :33060-33071