Another Proof of the Binomial Theorem

被引:1
|
作者
不详
机构
来源
AMERICAN MATHEMATICAL MONTHLY | 2017年 / 124卷 / 07期
关键词
D O I
10.4169/amer.math.monthly.124.7.658
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:658 / 658
页数:1
相关论文
共 50 条
  • [1] PROOF OF BINOMIAL THEOREM
    SHELUPSK.D
    AMERICAN MATHEMATICAL MONTHLY, 1974, 81 (04): : 390 - 393
  • [2] An Alternate Proof of the Binomial Theorem
    Kataria, Kuldeep Kumar
    AMERICAN MATHEMATICAL MONTHLY, 2016, 123 (09): : 940 - 940
  • [3] ANOTHER PROBABILISTIC PROOF OF A BINOMIAL IDENTITY
    Nakata, Toshio
    FIBONACCI QUARTERLY, 2014, 52 (02): : 139 - 140
  • [4] Simple and probabilistic proof of the binomial theorem
    Mukhopadhyay, Nitis
    AMERICAN STATISTICIAN, 2007, 61 (03): : 283 - 283
  • [5] A simple and probabilistic proof of the binomial theorem
    Rosalsky, Andrew
    AMERICAN STATISTICIAN, 2007, 61 (02): : 161 - 162
  • [6] ANOTHER PROOF OF ARROWS THEOREM
    MONJARDET, B
    RAIRO-RECHERCHE OPERATIONNELLE-OPERATIONS RESEARCH, 1978, 12 (03): : 291 - 296
  • [7] ANOTHER PROOF OF A SAKHANENKO THEOREM?
    Formanov, Sh. K.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2022, 67 (03) : 473 - 477
  • [8] Another proof of Liouville theorem
    Zheng, Shenzhou
    Zheng, Xueliang
    Beifang Jiaotong Daxue Xuebao/Journal of Northern Jiaotong University, 2000, 24 (02): : 37 - 42
  • [9] ANOTHER PROOF OF THE LIOUVILLE THEOREM
    Liu, Zhuomin
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2013, 38 (01) : 327 - 340
  • [10] ANOTHER PROOF OF ASCOLIS THEOREM
    KLEPPNER, A
    AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (03): : 315 - &