Determination of the rate-dependent adhesion of polydimethylsiloxane using an atomic force microscope

被引:6
|
作者
Petroli, Alessandra [1 ,2 ]
Petroli, Mario [3 ]
Romagnoli, Marcello [4 ]
Geoghegan, Mark [1 ,5 ,6 ]
机构
[1] Univ Sheffield, Dept Phys & Astron, Hounsfield Rd, Sheffield S3 7RH, England
[2] Univ Bologna, Dipartimento Chim Ind Toso Montanari, Viale Risorgimento 4, I-40136 Bologna, Italy
[3] Univ Bologna, CESIA, Viale Filopanti 3, I-40126 Bologna, Italy
[4] Univ Modena & Reggio Emilia, Dipartimento Ingn Enzo Ferrari, Via Pietro Vivarelli 10, I-41125 Modena, Italy
[5] Univ Modena & Reggio Emilia, Dipartimento Sci Vita, Via G Campi 103, I-41125 Modena, Italy
[6] Newcastle Univ, Sch Engn, Merz Court, Newcastle Upon Tyne NE1 7RU, England
基金
英国工程与自然科学研究理事会;
关键词
SURFACE-ENERGY; DEFORMATION; MECHANICS; CONTACT; JKR; POLY(DIMETHYLSILOXANE); FRICTION; ADHERENCE; POLYMER; MEMS;
D O I
10.1016/j.polymer.2022.125445
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A JKR (Johnson-Kendall-Roberts) formalism is used to extract the Young modulus, the contact radius, and the energy release rate simply from the retraction curve of a borosilicate glass colloidal probe from a polydimethylsiloxane (PDMS) surface using an atomic force microscope. PDMS samples ranged from perfectly elastic to those with incipient viscoelasticity. The dependence of the release rate energy with the crack speed is verified using a fracture mechanics-based method.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Force-dependent bond dissociation explains the rate-dependent fracture of vitrimers
    Song, Zhaoqiang
    Shen, Tong
    Vernerey, Franck J.
    Cai, Shengqiang
    SOFT MATTER, 2021, 17 (27) : 6669 - 6674
  • [22] Determination of the elastic modulus of adherent cells using spherical atomic force microscope probe
    Sun, Weihao
    Yin, Peinan
    Wang, Chao
    Ren, Yifei
    Han, Xiao
    Wu, Chengwei
    Zhang, Wei
    JOURNAL OF MATERIALS SCIENCE, 2021, 56 (32) : 18210 - 18218
  • [23] Method for lateral force calibration in atomic force microscope using MEMS microforce sensor
    Dziekonski, Cezary
    Dera, Wojciech
    Jarzabek, Dariusz M.
    ULTRAMICROSCOPY, 2017, 182 : 1 - 9
  • [24] Formation of 1-D Nanostructures Using Atomic Force Microscope
    Lee, Hyungoo
    Cooper, Rodrigo
    Yapici, Murat Kaya
    Zou, Jun
    Liang, Hong
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2011, 10 (02) : 310 - 318
  • [25] Friction force studies on layered materials using an Atomic Force Microscope
    Klein, H
    Pailharey, D
    Mathey, Y
    SURFACE SCIENCE, 1997, 387 (1-3) : 227 - 235
  • [26] Force Spectroscopy of Single Protein Molecules Using an Atomic Force Microscope
    Scholl, Zackary N.
    Li, Qing
    Josephs, Eric
    Apostolidou, Dimitra
    Marszalek, Piotr E.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2019, (144):
  • [27] Dynamic indentation of polymers using the atomic force microscope
    Hou, HY
    Chang, NK
    Chang, SH
    NANOMECHANICS OF MATERIALS AND STRUCTURES, 2006, : 171 - +
  • [28] Rate-dependent adhesion in dynamic contact of spherical-tip fibrillar structures
    Li, Ruozhang
    Sun, Jun
    Li, Dongwu
    Li, Xiuyuan
    Zhang, Xiaolong
    Zhang, Wenming
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2022, 259
  • [29] Forced peeling and relaxation of neurite governed by rate-dependent adhesion and cellular viscoelasticity
    Gong, Ze
    Fang, Chao
    You, Ran
    Shao, Xueying
    Chang, Raymond Chuen-Chung
    Lin, Yuan
    EXTREME MECHANICS LETTERS, 2020, 40
  • [30] Measuring graphene adhesion using atomic force microscopy with a microsphere tip
    Jiang, Tao
    Zhu, Yong
    NANOSCALE, 2015, 7 (24) : 10760 - 10766