Globally exponential hyperchaos (lag) synchronization in a family of modified hyperchaotic Rossler systems

被引:16
作者
Yan, Zhenya [1 ]
Yu, Pei
机构
[1] Acad Mil Med Sci, Chinese Acad Sci, Inst Syst Sci, Beijing 100080, Peoples R China
[2] Univ Western Ontario, Dept Appl Math, London, ON N6A 5B7, Canada
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2007年 / 17卷 / 05期
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
modified hyperchaotic Rossler system; GES; GELS; feedback control; lyapunov function;
D O I
10.1142/S0218127407018063
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a new family of modified hyperchaotic Rossler systems, recently studied by Nikolov and Clodong using proper nonlinear feedback controllers. Particular attention is given to (i) globally exponential lag synchronization ( GELS) for tau > 0; and (ii) globally exponential synchronization (GES) for tau = 0. As a representative example, one system of the family of modified hyperchaotic Rossler systems is particularly studied, and Lyapunov stability criteria for the GELS and GES are derived via eight families of proper nonlinear feedback controllers. Moreover, we also present some nonlinear feedback control laws for other modified hyperchaotic Rossler systems. Numerical simulations are used to illustrate the theoretical results.
引用
收藏
页码:1759 / 1774
页数:16
相关论文
共 21 条
[1]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[2]  
Chen G., 1998, CHAOS ORDER PERSPECT
[3]  
Chen G., 2003, DYNAMICAL ANAL CONTR
[4]   The role of synchronization in digital communications using chaos - Part II: Chaotic modulation and chaotic synchronization [J].
Kolumban, G ;
Kennedy, MP ;
Chua, LO .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1998, 45 (11) :1129-1140
[5]   Generating hyperchaos via state feedback control [J].
Li, YX ;
Tang, WKS ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (10) :3367-3375
[6]   Study of globally exponential synchronization for the family of Rossler systems [J].
Liao, Xiaoxin ;
Yu, Pei .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (08) :2395-2406
[7]  
LIAO XX, 1993, ABSOLUTE STABILITY N
[8]  
LIAO XX, 2002, STABILITY THEORY APP
[9]  
LIAO XX, 2005, INT J BIFURCAT CHAOS, V15, P3687
[10]   HYPERCHAOS - LABORATORY EXPERIMENT AND NUMERICAL CONFIRMATION [J].
MATSUMOTO, T ;
CHUA, LO ;
KOBAYASHI, K .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1986, 33 (11) :1143-1147