Identifying cellular automata rules

被引:0
作者
Maeda, Ken-Ichi [1 ]
Sakama, Chiaki [1 ]
机构
[1] Wakayama Univ, Dept Comp & Commun Sci, Wakayama 6408510, Japan
关键词
cellular automata; identification problem; genetic programming; decision tree;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper studies a method for identifying cellular automata rules (CA rules). Given a sequence of CA configurations, we first seek an appropriate neighborhood of a cell and collect cellular changes of states as evidences. The collected evidences are then classified using a decision tree, which is used for constructing CA transition rules. Conditions for classifying evidences in a decision tree are computed using genetic programming. We perform experiments using several types of CAs and verify that the proposed method successfully identifies correct CA rules.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [31] COMPLEX DYNAMICS OF ELEMENTARY CELLULAR AUTOMATA EMERGING FROM CHAOTIC RULES
    Martinez, Genaro J.
    Adamatzky, Andrew
    Alonso-Sanz, Ramon
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (02):
  • [32] ERRORLESS DESCRIPTION WITH TWO RULES OF CELLULAR AUTOMATA FOR DIGITAL SOUND DATA
    Kuroiwa, Jousuke
    Nara, Shigetoshi
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (08):
  • [33] Identifying Patterns from One-Rule-Firing Cellular Automata
    Shin, Jae Kyun
    [J]. ARTIFICIAL LIFE, 2011, 17 (01) : 21 - 32
  • [34] Mining cellular automata rules The use of a Naive Bayes classifier to provide transition rules in Phragmites simulation
    Altartouri, Anas
    Jolma, Ari
    [J]. INTERNATIONAL PROCEEDINGS ON CELLULAR AUTOMATA MODELING FOR URBAN AND SPATIAL SYSTEM, CAMUSS 2012, 2012, : 79 - 90
  • [35] Dynamic behaviour of network cellular automata with non-chaotic standard rules
    de Macedo, Heverton Barros
    Barbosa de Oliveira, Gina Maira
    Costa Ribeiro, Carlos Henrique
    [J]. 2014 SECOND WORLD CONFERENCE ON COMPLEX SYSTEMS (WCCS), 2014, : 451 - 456
  • [36] Merging Cellular Automata Rules to Optimise a Solution to the Modulo-n Problem
    Martins, Claudio L. M.
    de Oliveira, Pedro P. B.
    [J]. CELLULAR AUTOMATA AND DISCRETE COMPLEX SYSTEMS, AUTOMATA 2015, 2015, 9099 : 196 - 209
  • [37] Genetic algorithm evolution of cellular automata rules for complex binary sequence prediction
    Adamopoulos, A. V.
    Pavlidis, N. G.
    Vrahatis, M. N.
    [J]. ADVANCES IN COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2005, VOLS 4 A & 4 B, 2005, 4A-4B : 1424 - 1427
  • [38] Cellular Automata for Urban Growth Modelling: A Review on Factors Defining Transition Rules
    Wahyudi, Agung
    Liu, Yan
    [J]. INTERNATIONAL REVIEW FOR SPATIAL PLANNING AND SUSTAINABLE DEVELOPMENT, 2016, 4 (02): : 60 - 75
  • [39] Cellular automata cryptographic model based on bi-directional toggle rules
    Oliveira, GMB
    Coelho, AR
    Monteiro, LHA
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2004, 15 (08): : 1061 - 1068
  • [40] Discovering Cellular Automata Rules for Binary Classification Problem with Use of Genetic Algorithm
    Piwonska, Anna
    Seredynski, Franciszek
    Szaban, Miroslaw
    [J]. 2012 IEEE 26TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS & PHD FORUM (IPDPSW), 2012, : 649 - 655