Causal Poisson bracket via deformation quantization

被引:0
|
作者
Berra-Montiel, Jasel [1 ]
Molgado, Alberto [1 ,2 ]
Palacios-Garcia, Cesar D. [3 ]
机构
[1] Univ Autonoma San Luis Potosi, Fac Ciencias, Av Salvador Nava S-N Zona Univ, San Luis Potosi 78290, Slp, Mexico
[2] Dual CP Inst High Energy Phys, Bernal Diaz del Castillo 340, Colima 28045, Mexico
[3] Univ Autonoma San Luis Potosi, Inst Fis Manuel Sandoval Vallarta, Alvaro Obregon 64, San Luis Potosi 78000, Slp, Mexico
关键词
Deformation quantization; Poisson structures; field theory; PHASE-SPACE;
D O I
10.1142/S0219887816501048
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Starting with the well-defined product of quantum fields at two spacetime points, we explore an associated Poisson structure for classical field theories within the deformation quantization formalism. We realize that the induced star-product is naturally related to the standard Moyal product through an appropriate causal Green's functions connecting points in the space of classical solutions to the equations of motion. Our results resemble the Peierls-DeWitt bracket that has been analyzed in the multisymplectic context. Once our star-product is defined, we are able to apply the Wigner-Weyl map in order to introduce a generalized version of Wick's theorem. Finally, we include some examples to explicitly test our method: the real scalar field, the bosonic string and a physically motivated nonlinear particle model. For the field theoretic models, we have encountered causal generalizations of the creation/annihilation relations, and also a causal generalization of the Virasoro algebra for the bosonic string. For the nonlinear particle case, we use the approximate solution in terms of the Green's function, in order to construct a well-behaved causal bracket.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] A Variant of the Mukai Pairing via Deformation Quantization
    Ramadoss, Ajay C.
    LETTERS IN MATHEMATICAL PHYSICS, 2012, 100 (03) : 309 - 325
  • [22] Quantization of linear Poisson structures and degrees of maps
    Polyak, M
    LETTERS IN MATHEMATICAL PHYSICS, 2003, 66 (1-2) : 15 - 35
  • [23] Quantization of Linear Poisson Structures and Degrees of Maps
    Michael Polyak
    Letters in Mathematical Physics, 2003, 66 : 15 - 35
  • [24] Deformation quantization of fermi fields
    Galaviz, I.
    Garcia-Compean, H.
    Przanowski, M.
    Turrubiates, F. J.
    ANNALS OF PHYSICS, 2008, 323 (04) : 827 - 844
  • [25] Deformation quantization of classical fields
    García-Compeán, H
    Plebanski, JF
    Przanowski, M
    Turrubiates, FJ
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2001, 16 (14): : 2533 - 2558
  • [26] Weak quantization of Poisson structures
    Calaque, Damien
    Halbout, Gilles
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (08) : 1401 - 1414
  • [27] Quantization is deformation
    Sternheimer, D
    NONCOMMUTATIVE GEOMETRY AND REPRESENTATION THEORY IN MATHEMATICAL PHYSICS, 2005, 391 : 331 - 352
  • [28] Derived algebraic geometry and deformation quantization
    Toen, Bertrand
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL II, 2014, : 769 - 792
  • [29] Moyal Quantization of sdiff(T2k/N), q-Deformation, and q-Moyal Bracket
    E. H. El Kinani
    A. Ouarab
    International Journal of Theoretical Physics, 1998, 37 (3) : 1011 - 1017
  • [30] Algebraic Quantization of Causal Sets
    Ioannis Raptis
    International Journal of Theoretical Physics, 2000, 39 : 1233 - 1240