Five challenges for stochastic epidemic models involving global transmission

被引:38
作者
Britton, Tom [1 ]
House, Thomas [2 ,3 ]
Lloyd, Alun L. [4 ,5 ,6 ]
Mollison, Denis [7 ]
Riley, Steven [8 ,9 ,10 ]
Trapman, Pieter [1 ]
机构
[1] Stockholm Univ, Dept Math, S-10691 Stockholm, Sweden
[2] Univ Warwick, Warwick Infect Dis Epidemiol Res Ctr WIDER, Coventry CV4 7AL, W Midlands, England
[3] Univ Warwick, Warwick Math Inst, Coventry CV4 7AL, W Midlands, England
[4] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[5] N Carolina State Univ, Biomath Grad Program, Raleigh, NC 27695 USA
[6] NIH, Fogarty Int Ctr, Bethesda, MD 20892 USA
[7] Heriot Watt Univ, Dept Actuarial Math & Stat, Edinburgh EH14 4AS, Midlothian, Scotland
[8] Univ London Imperial Coll Sci Technol & Med, Sch Publ Hlth, Dept Infect Dis Epidemiol, Ctr Outbreak Anal & Modelling, London, England
[9] Univ Hong Kong, Dept Community Med, Pokfulam, Hong Kong, Peoples R China
[10] Univ Hong Kong, Sch Publ Hlth, Pokfulam, Hong Kong, Peoples R China
基金
美国国家科学基金会; 美国国家卫生研究院; 英国惠康基金; 瑞典研究理事会; 英国工程与自然科学研究理事会; 英国医学研究理事会;
关键词
Stochastic epidemics; Global transmission; Extinction; Genetic evolution; Endemicity; EXTINCTION; EVOLUTION; DYNAMICS;
D O I
10.1016/j.epidem.2014.05.002
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
The most basic stochastic epidemic models are those involving global transmission, meaning that infection rates depend only on the type and state of the individuals involved, and not on their location in the population. Simple as they are, there are still several open problems for such models. For example, when will such an epidemic go extinct and with what probability (questions depending on the population being fixed, changing or growing)? How can a model be defined explaining the sometimes observed scenario of frequent mid-sized epidemic outbreaks? How can evolution of the infectious agent transmission rates be modelled and fitted to data in a robust way? (C) 2014 The Authors. Published by Elsevier B.V.
引用
收藏
页码:54 / 57
页数:4
相关论文
共 25 条
  • [11] Characteristics of Patients with Oseltamivir-Resistant Pandemic (H1N1) 2009, United States
    Graitcer, Samuel B.
    Gubareva, Larisa
    Kamimoto, Laurie
    Doshi, Saumil
    Vandermeer, Meredith
    Louie, Janice
    Waters, Christine
    Moore, Zack
    Sleeman, Katrina
    Okomo-Adhiambo, Margaret
    Marshall, Steven A.
    George, Kirsten St.
    Pan, Chao-Yang
    LaPlante, Jennifer M.
    Klimov, Alexander
    Fry, Alicia M.
    [J]. EMERGING INFECTIOUS DISEASES, 2011, 17 (02) : 255 - 257
  • [12] Testing Spatiotemporal Hypothesis of Bacterial Evolution Using Methicillin-Resistant Staphylococcus aureus ST239 Genome-wide Data within a Bayesian Framework
    Gray, Rebecca R.
    Tatem, Andrew J.
    Johnson, Judith A.
    Alekseyenko, Alexander V.
    Pybus, Oliver G.
    Suchard, Marc A.
    Salemi, Marco
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2011, 28 (05) : 1593 - 1603
  • [13] Unifying the epidemiological and evolutionary dynamics of pathogens
    Grenfell, BT
    Pybus, OG
    Gog, JR
    Wood, JLN
    Daly, JM
    Mumford, JA
    Holmes, EC
    [J]. SCIENCE, 2004, 303 (5656) : 327 - 332
  • [14] Extinction of an infectious disease: A large fluctuation in a nonequilibrium system
    Kamenev, Alex
    Meerson, Baruch
    [J]. PHYSICAL REVIEW E, 2008, 77 (06):
  • [15] Towards the endgame and beyond: complexities and challenges for the elimination of infectious diseases
    Klepac, Petra
    Metcalf, C. Jessica E.
    McLean, Angela R.
    Hampson, Katie
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2013, 368 (1623)
  • [16] Epochal evolution shapes the phylodynamics of interpandemic influenza A (H3N2) in humans
    Koelle, Katia
    Cobey, Sarah
    Grenfell, Bryan
    Pascual, Mercedes
    [J]. SCIENCE, 2006, 314 (5807) : 1898 - 1903
  • [17] Dynamic concurrent partnership networks incorporating demography
    Leung, K. Y.
    Kretzschmar, M. E. E.
    Diekmann, O.
    [J]. THEORETICAL POPULATION BIOLOGY, 2012, 82 (03) : 229 - 239
  • [18] Antibacterial resistance worldwide: causes, challenges and responses
    Levy, SB
    Marshall, B
    [J]. NATURE MEDICINE, 2004, 10 (12) : S122 - S129
  • [19] Epidemic Dynamics at the Human-Animal Interface
    Lloyd-Smith, James O.
    George, Dylan
    Pepin, Kim M.
    Pitzer, Virginia E.
    Pulliam, Juliet R. C.
    Dobson, Andrew P.
    Hudson, Peter J.
    Grenfell, Bryan T.
    [J]. SCIENCE, 2009, 326 (5958) : 1362 - 1367
  • [20] WKB theory of epidemic fade-out in stochastic populations
    Meerson, Baruch
    Sasorov, Pavel V.
    [J]. PHYSICAL REVIEW E, 2009, 80 (04):