Five challenges for stochastic epidemic models involving global transmission

被引:38
作者
Britton, Tom [1 ]
House, Thomas [2 ,3 ]
Lloyd, Alun L. [4 ,5 ,6 ]
Mollison, Denis [7 ]
Riley, Steven [8 ,9 ,10 ]
Trapman, Pieter [1 ]
机构
[1] Stockholm Univ, Dept Math, S-10691 Stockholm, Sweden
[2] Univ Warwick, Warwick Infect Dis Epidemiol Res Ctr WIDER, Coventry CV4 7AL, W Midlands, England
[3] Univ Warwick, Warwick Math Inst, Coventry CV4 7AL, W Midlands, England
[4] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[5] N Carolina State Univ, Biomath Grad Program, Raleigh, NC 27695 USA
[6] NIH, Fogarty Int Ctr, Bethesda, MD 20892 USA
[7] Heriot Watt Univ, Dept Actuarial Math & Stat, Edinburgh EH14 4AS, Midlothian, Scotland
[8] Univ London Imperial Coll Sci Technol & Med, Sch Publ Hlth, Dept Infect Dis Epidemiol, Ctr Outbreak Anal & Modelling, London, England
[9] Univ Hong Kong, Dept Community Med, Pokfulam, Hong Kong, Peoples R China
[10] Univ Hong Kong, Sch Publ Hlth, Pokfulam, Hong Kong, Peoples R China
基金
美国国家科学基金会; 美国国家卫生研究院; 英国惠康基金; 瑞典研究理事会; 英国工程与自然科学研究理事会; 英国医学研究理事会;
关键词
Stochastic epidemics; Global transmission; Extinction; Genetic evolution; Endemicity; EXTINCTION; EVOLUTION; DYNAMICS;
D O I
10.1016/j.epidem.2014.05.002
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
The most basic stochastic epidemic models are those involving global transmission, meaning that infection rates depend only on the type and state of the individuals involved, and not on their location in the population. Simple as they are, there are still several open problems for such models. For example, when will such an epidemic go extinct and with what probability (questions depending on the population being fixed, changing or growing)? How can a model be defined explaining the sometimes observed scenario of frequent mid-sized epidemic outbreaks? How can evolution of the infectious agent transmission rates be modelled and fitted to data in a robust way? (C) 2014 The Authors. Published by Elsevier B.V.
引用
收藏
页码:54 / 57
页数:4
相关论文
共 25 条
  • [1] ANDERSON R M, 1991
  • [2] [Anonymous], 2013, Mathematical Tools for Understanding Infectious Disease Dynamics
  • [3] A SIMPLE STOCHASTIC EPIDEMIC
    BAILEY, NTJ
    [J]. BIOMETRIKA, 1950, 37 (3-4) : 193 - 202
  • [4] THE THRESHOLD BEHAVIOR OF EPIDEMIC MODELS
    BALL, F
    [J]. JOURNAL OF APPLIED PROBABILITY, 1983, 20 (02) : 227 - 241
  • [5] Ball F., 2013, ARXIV10114242
  • [6] Bartlett M., 1956, P 3 BERKELEY S MATH, V4, P109
  • [7] Comparing methods for estimating R0 from the size distribution of subcritical transmission chains
    Blumberg, S.
    Lloyd-Smith, J. O.
    [J]. EPIDEMICS, 2013, 5 (03) : 131 - 145
  • [8] Stochastic Epidemics in Growing Populations
    Britton, Tom
    Trapman, Pieter
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2014, 76 (05) : 985 - 996
  • [9] A DYNAMIC NETWORK IN A DYNAMIC POPULATION: ASYMPTOTIC PROPERTIES
    Britton, Tom
    Lindholm, Mathias
    Turova, Tatyana
    [J]. JOURNAL OF APPLIED PROBABILITY, 2011, 48 (04) : 1163 - 1178
  • [10] Ecological and immunological determinants of influenza evolution
    Ferguson, NM
    Galvani, AP
    Bush, RM
    [J]. NATURE, 2003, 422 (6930) : 428 - 433