Enhanced third harmonic (TH) generation from Silicon-On-Insulator (SOI) planar waveguides as well as SOI photonic crystal (PhC) slabs is studied in different angular configurations, both in the visible and infrared energy ranges. In the SOI planar waveguide, the multilayer structure causes the optical properties such as TH reflection to be different from those of bulk silicon samples. This behavior is well reproduced by calculations of TH reflectance. Measurements of third-harmonic reflection and diffraction from one-dimensional PhC slabs etched in the SOI waveguide are also reported. The angular positions of TH peaks at various diffraction orders agree well with those calculated from a nonlinear grating equation. Both reflection and diffraction processes contribute to enhanced TH generation efficiency in the PhC slabs. TH reflectance measurements performed on PhC slabs in the near infrared show a resonant interaction between the incident beam and the photonic structure, dependent on the angle of incidence. This leads to a nonlinear conversion efficiency which is strongly enhanced with respect to that of the SOI waveguide, due to the excitation of strong local fields associated with the presence of photonic modes in the PhC slab.