THE COMPLETION OF GENERALIZED B-METRIC SPACES AND FIXED POINTS

被引:28
作者
Cobzas, Stefan [1 ]
Czerwik, Stefan [2 ]
机构
[1] Babes Bolyai Univ, Dept Math, Cluj Napoca, Romania
[2] Silesian Tech Univ, Inst Math, Gliwice, Poland
来源
FIXED POINT THEORY | 2020年 / 21卷 / 01期
关键词
Metric space; metrizability; b-metric space; generalized b-metric space; completion of a generalized b-metric space; fixed point; LIPSCHITZ; THEOREMS;
D O I
10.24193/fpt-ro.2020.1.10
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the notion of generalized b-metric, as a b-metric which can take infinite values, and prove the existence and uniqueness of the completion of some particular b-metric spaces (called generalized strong b-metric spaces). Some fixed point results in b-metric spaces and their counterparts in generalized b-metric spaces are proved.
引用
收藏
页码:133 / 150
页数:18
相关论文
共 47 条
  • [1] AIMAR H., 1998, Rev. Un. Mat. Argentina, V41, P67
  • [2] An T.V., 2015, ARXIV150701724
  • [3] [Anonymous], 1993, SEMINAR FIXED POINT, V3, P3
  • [4] [Anonymous], 2014, Encyclopedia of Distances
  • [5] [Anonymous], 2008, Fixed Point Theory
  • [6] Aydi H., 2018, MODERN DISCRETE MATH, P1, DOI DOI 10.1007/978-3-319-74325-7_1
  • [7] Bakhtin I., 1989, Functinal Analysis Ulianowsk Gos. Ped. Inst, V30, P26, DOI DOI 10.1039/AP9892600037
  • [8] Structural Properties of Extended Normed Spaces
    Beer, G.
    Vanderwerff, J.
    [J]. SET-VALUED AND VARIATIONAL ANALYSIS, 2015, 23 (04) : 613 - 630
  • [9] SEPARATION OF CONVEX SETS IN EXTENDED NORMED SPACES
    Beer, G.
    Vanderwerff, J.
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 99 (02) : 145 - 165
  • [10] Beer G, 2015, J CONVEX ANAL, V22, P37