Production of 87Rb Bose-Einstein Condensate in an Asymmetric Crossed Optical Dipole Trap

被引:2
|
作者
Ma, Zhu [1 ,2 ,3 ]
Han, Chengyin [1 ,2 ]
Jiang, Xunda [1 ,2 ,3 ]
Fang, Ruihuan [1 ,2 ,3 ]
Qiu, Yuxiang [1 ,2 ,3 ]
Zhao, Minhua [1 ,2 ,3 ]
Huang, Jiahao [1 ,2 ]
Lu, Bo [1 ,2 ]
Lee, Chaohong [1 ,2 ,3 ]
机构
[1] Sun Yat Sen Univ, Guangdong Prov Key Lab Quantum Metrol & Sensing, Zhuhai Campus, Zhuhai 519082, Peoples R China
[2] Sun Yat Sen Univ, Sch Phys & Astron, Zhuhai Campus, Zhuhai 519082, Peoples R China
[3] Sun Yat Sen Univ, State Key Lab Optoelect Mat & Technol, Guangzhou Campus, Guangzhou 510275, Peoples R China
基金
中国国家自然科学基金;
关键词
GAS; ENTANGLEMENT; GENERATION; QUADRUPOLE; DYNAMICS;
D O I
10.1088/0256-307X/38/10/103701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report the production of Rb-87 Bose-Einstein condensate in an asymmetric crossed optical dipole trap (ACODT) without the need of an additional dimple laser. In our experiment, the ACODT is formed by two laser beams with different radii to achieve efficient capture and rapid evaporation of laser cooled atoms. Compared to the cooling procedure in a magnetic trap, the atoms are firstly laser cooled and then directly loaded into an ACODT without the pre-evaporative cooling process. In order to determine the optimal parameters for evaporation cooling, we optimize the power ratio of the two beams and the evaporation time to maximize the final atom number left in the ACODT. By loading about 6 x 10(5) laser cooled atoms in the ACODT, we obtain a pure Bose-Einstein condensate with about 1.4 x 10(4) atoms after 19 s evaporation. Additionally, we demonstrate that the fringe-type noises in optical density distributions can be reduced via principal component analysis, which correspondingly improves the reliability of temperature measurement.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Optical-plug-assisted spin vortex in a 87Rb dipolar spinor Bose-Einstein condensate
    Tang, Hui
    Du, Peng
    Jing, Lei
    Yi, Su
    Zhang, Wenxian
    PHYSICAL REVIEW A, 2022, 105 (06)
  • [22] Production of 87Rb Bose–Einstein Condensate with a Simple Evaporative Cooling Method
    Rehman Fazal
    李嘉桢
    陈志文
    秦源
    林雅益
    张钻娴
    张善超
    黄巍
    颜辉
    朱诗亮
    Chinese Physics Letters, 2020, 37 (03) : 56 - 60
  • [24] Dual-species Bose-Einstein condensate of 87Rb and 133Cs
    McCarron, D. J.
    Cho, H. W.
    Jenkin, D. L.
    Koeppinger, M. P.
    Cornish, S. L.
    PHYSICAL REVIEW A, 2011, 84 (01):
  • [25] New observation of Bose-Einstein condensation of 87Rb atoms in a magnetic TOP trap
    Courteille, PW
    Han, DJ
    Wynar, RH
    Heinzen, DJ
    METHODS FOR ULTRASENSITIVE DETECTION, 1998, 3270 : 116 - 119
  • [26] Compact setup for the production of 87Rb |F=2, mF =+2⟩ Bose-Einstein condensates in a hybrid trap
    Nolli, Raffaele
    Venturelli, Michela
    Marmugi, Luca
    Wickenbrock, Arne
    Renzoni, Ferruccio
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (08):
  • [27] Bose-Einstein condensation in 87Rb:: Characterization of the Brazilian experiment
    Henn, E. A. L.
    Seman, J. A.
    Seco, G. B.
    Olimpio, E. P.
    Castilho, P.
    Roati, G.
    Magalhaes, D. V.
    Magalhaes, K. M. F.
    Bagnato, V. S.
    BRAZILIAN JOURNAL OF PHYSICS, 2008, 38 (02) : 279 - 286
  • [28] Production of dual species Bose-Einstein condensates of 39K and 87Rb*
    Mi, Cheng-Dong
    Nawaz, Khan Sadiq
    Wang, Peng-Jun
    Chen, Liang-Chao
    Meng, Zeng-Ming
    Huang, Lianghui
    Zhang, Jing
    CHINESE PHYSICS B, 2021, 30 (06)
  • [29] Optimal preparation of Bose and Fermi atomic gas mixtures of 87Rb and 40K in a crossed optical dipole trap
    Ding, Peibo
    Shan, Biao
    Zhao, Yuhang
    Yang, Yajing
    Chen, Liangchao
    Meng, Zengming
    Wang, Pengjun
    Huang, Lianhhui
    CHINESE PHYSICS B, 2024, 33 (06)