Three-scale finite element discretizations for quantum eigenvalue problems

被引:56
作者
Dai, Xiaoying [1 ,2 ]
Zhou, Aihui [1 ]
机构
[1] Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, LSEC, Beijing 100080, Peoples R China
[2] Chinese Acad Sci, Grad Univ, Beijing 100080, Peoples R China
关键词
eigenvalue; finite element; ground state energy; local computation; three-scale; quantum chemistry;
D O I
10.1137/06067780X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on globally and locally coupled discretizations, some three-scale finite element schemes are proposed in this paper for a class of quantum eigenvalue problems. It is shown that the solution of a quantum eigenvalue problem on a fine grid may be reduced to the solution of an eigenvalue problem on a relatively coarse grid, and the solutions of linear algebraic systems on a globally mesoscopic grid and the locally fine grid, and the resulting solution is still very satisfactory.
引用
收藏
页码:295 / 324
页数:30
相关论文
共 50 条
  • [31] THE SHIFTED-INVERSE ITERATION BASED ON THE MULTIGRID DISCRETIZATIONS FOR EIGENVALUE PROBLEMS
    Yang, Yidu
    Bi, Hai
    Han, Jiayu
    Yu, Yuanyuan
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (06) : A2583 - A2606
  • [32] Finite Element Approximation of the Minimal Eigenvalue of a Nonlinear Eigenvalue Problem
    Solov’ev S.I.
    Solov’ev P.S.
    Lobachevskii Journal of Mathematics, 2018, 39 (7) : 949 - 956
  • [33] Perturbation Finite Element Transfer Matrix Method for Random Eigenvalue Problems of Uncertain Structures
    Rong, Bao
    Rui, Xiaoting
    Tao, Ling
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2012, 79 (02):
  • [34] The lower approximation of eigenvalue by lumped mass finite element method
    Hu, J
    Huang, YQ
    Shen, HM
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2004, 22 (04) : 545 - 556
  • [35] Symmetric finite volume schemes for eigenvalue problems in arbitrary dimensions
    Xiaoying Dai
    Zhang Yang
    Aihui Zhou
    Science in China Series A: Mathematics, 2008, 51 : 1401 - 1414
  • [36] Symmetric finite volume schemes for eigenvalue problems in arbitrary dimensions
    Dai Xiaoying
    Yang Zhang
    Zhou Aihui
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (08): : 1401 - 1414
  • [37] Immersed finite element method for eigenvalue problem
    Lee, Seungwoo
    Kwak, Do Y.
    Sim, Imbo
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 313 : 410 - 426
  • [39] Some theorems about spectrum and finite element approach for eigenvalue problems for elastic bodies with voids
    Iovane, G.
    Nasedkin, A. V.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 53 (05) : 789 - 802
  • [40] A STUDY ON ANISOTROPIC MESH ADAPTATION FOR FINITE ELEMENT APPROXIMATION OF EIGENVALUE PROBLEMS WITH ANISOTROPIC DIFFUSION OPERATORS
    Wang, Jingyue
    Huang, Weizhang
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (06) : A2924 - A2946