MULTILABEL 12-LEAD ELECTROCARDIOGRAM CLASSIFICATION USING BEAT TO SEQUENCE AUTOENCODERS

被引:10
作者
Wong, Alexander William [1 ]
Salimi, Amir [1 ]
Hindle, Abram [1 ]
Kalmady, Sunil Vasu [2 ]
Kaul, Padma [2 ]
机构
[1] Univ Alberta, Dept Comp Sci, Edmonton, AB, Canada
[2] Univ Alberta, Canadian VIGOUR Ctr, Edmonton, AB, Canada
来源
2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021) | 2021年
关键词
electrocardiogram; signal autoencoder; signal embedding; multi-label classification; PhysioNet/CinC;
D O I
10.1109/ICASSP39728.2021.9414934
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The 12-lead electrocardiogram (ECG) measures the electrical activity of the heart for physicians to use in diagnosing cardiac disorders. This paper investigates the multi-label, multi-class classification of ECG records into one or more of 27 possible medical diagnoses. Our multi-step approach uses conventional physiological algorithms for segmentation of heartbeats from the baseline signals. We stack a heartbeat autoencoder over heartbeat windows to make embeddings, then we encode this sequence of embeddings to make an ECG embedding which we then classify on. We utilize the public dataset of 43,101 available ECG records provided by the PhysioNet/CinC 2020 challenge, performing repeated random subsampling and splitting the available records into 80% training, 10% validation, and 10% test splits, 20 times. We attain a mean test split challenge score of 0.248 with an overall macro F-1 score of 0.260 across the 27 labels.
引用
收藏
页码:1270 / 1274
页数:5
相关论文
共 15 条
  • [1] Classification of myocardial infarction with multi-lead ECG signals and deep CNN
    Baloglu, Ulas Baran
    Talo, Muhammed
    Yildirim, Ozal
    Tan, Ru San
    Acharya, U. Rajendra
    [J]. PATTERN RECOGNITION LETTERS, 2019, 122 : 23 - 30
  • [2] LOF: Identifying density-based local outliers
    Breunig, MM
    Kriegel, HP
    Ng, RT
    Sander, J
    [J]. SIGMOD RECORD, 2000, 29 (02) : 93 - 104
  • [3] Detection and Classification of Cardiac Arrhythmias by a Challenge-Best Deep Learning Neural Network Model
    Chen, Tsai-Min
    Huang, Chih-Han
    Shih, Edward S. C.
    Hu, Yu-Feng
    Hwang, Ming-Jing
    [J]. ISCIENCE, 2020, 23 (03)
  • [4] Semi-supervised Stacked Label Consistent Autoencoder for Reconstruction and Analysis of Biomedical Signals
    Gogna, Anupriya
    Majumdar, Angshul
    Ward, Rabab
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2017, 64 (09) : 2196 - 2205
  • [5] Reducing the dimensionality of data with neural networks
    Hinton, G. E.
    Salakhutdinov, R. R.
    [J]. SCIENCE, 2006, 313 (5786) : 504 - 507
  • [6] LSTM-Based Auto-Encoder Model for ECG Arrhythmias Classification
    Hou, Borui
    Yang, Jianyong
    Wang, Pu
    Yan, Ruqiang
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (04) : 1232 - 1240
  • [7] Computerized interpretation of electrocardiograms: Taking stock and implementing new knowledge
    Madias, John E.
    [J]. JOURNAL OF ELECTROCARDIOLOGY, 2018, 51 (03) : 413 - 415
  • [8] Makowski Dominique, 2002, NEUROKIT2 PYTHON TOO
  • [9] Inter-Patient ECG Classification With Symbolic Representations and Multi-Perspective Convolutional Neural Networks
    Niu, Jinghao
    Tang, Yongqiang
    Sun, Zhengya
    Zhang, Wensheng
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (05) : 1321 - 1332
  • [10] Classification of 12-lead ECGs: the PhysioNet/Computing in Cardiology Challenge 2020
    Perez Alday, Erick A.
    Gu, Annie
    Shah, Amit J.
    Robichaux, Chad
    Ian Wong, An-Kwok
    Liu, Chengyu
    Liu, Feifei
    Bahrami Rad, Ali
    Elola, Andoni
    Seyedi, Salman
    Li, Qiao
    Sharma, Ashish
    Clifford, Gari D.
    Reyna, Matthew A.
    [J]. PHYSIOLOGICAL MEASUREMENT, 2020, 41 (12)