Impact of non-unitary spin squeezing on atomic clock performance

被引:27
作者
Braverman, Boris [2 ,3 ]
Kawasaki, Akio [4 ,5 ]
Vuletic, Vladan [1 ]
机构
[1] MIT, Dept Phys, Harvard Ctr Ultracold Atoms, Cambridge, MA 02139 USA
[2] Univ Ottawa, Dept Phys, 25 Templeton St, Ottawa, ON K1N 6N5, Canada
[3] Univ Ottawa, Max Planck Ctr Extreme & Quantum Photon, 25 Templeton St, Ottawa, ON K1N 6N5, Canada
[4] Stanford Univ, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
关键词
atomic clocks; precision sensors; quantum entanglement; spin squeezing; antisqueezing; STANDARD QUANTUM LIMIT; ENTANGLEMENT; STATES; SPECTROSCOPY; NOISE; TIMES;
D O I
10.1088/1367-2630/aae563
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Spin squeezing is a form of entanglement that can improve the stability of quantum sensors operating with multiple particles, by inducing inter-particle correlations that redistribute the quantum projection noise. Previous analyses of potential metrological gain when using spin squeezing were performed on theoretically ideal states, without incorporating experimental imperfections or inherent limitations which result in non-unitary quantum state evolution. Here, we show that potential gains in clock stability are substantially reduced when the spin squeezing is non-unitary, and derive analytic formulas for the clock performance as a function of squeezing, excess spin noise, and interferometer contrast. Our results highlight the importance of creating and employing nearly pure entangled states for improving atomic clocks.
引用
收藏
页数:12
相关论文
共 36 条
[1]   Stability of atomic clocks based on entangled atoms -: art. no. 230801 [J].
André, A ;
Sorensen, AS ;
Lukin, MD .
PHYSICAL REVIEW LETTERS, 2004, 92 (23) :230801-1
[2]   Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit [J].
Appel, J. ;
Windpassinger, P. J. ;
Oblak, D. ;
Hoff, U. B. ;
Kjaergaard, N. ;
Polzik, E. S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (27) :10960-10965
[3]   Integrated Mach-Zehnder interferometer for Bose-Einstein condensates [J].
Berrada, T. ;
van Frank, S. ;
Buecker, R. ;
Schumm, T. ;
Schaff, J. -F. ;
Schmiedmayer, J. .
NATURE COMMUNICATIONS, 2013, 4
[4]   An optical lattice clock with accuracy and stability at the 10-18 level [J].
Bloom, B. J. ;
Nicholson, T. L. ;
Williams, J. R. ;
Campbell, S. L. ;
Bishof, M. ;
Zhang, X. ;
Zhang, W. ;
Bromley, S. L. ;
Ye, J. .
NATURE, 2014, 506 (7486) :71-+
[5]  
Bohnet JG, 2014, NAT PHOTONICS, V8, P731, DOI [10.1038/NPHOTON.2014.151, 10.1038/nphoton.2014.151]
[6]   Quantum spin dynamics and entanglement generation with hundreds of trapped ions [J].
Bohnet, Justin G. ;
Sawyer, Brian C. ;
Britton, Joseph W. ;
Wall, Michael L. ;
Rey, Ana Maria ;
Foss-Feig, Michael ;
Bollinger, John J. .
SCIENCE, 2016, 352 (6291) :1297-1301
[7]   Efficient Atomic Clocks Operated with Several Atomic Ensembles [J].
Borregaard, J. ;
Sorensen, A. S. .
PHYSICAL REVIEW LETTERS, 2013, 111 (09)
[8]   Near-Heisenberg-Limited Atomic Clocks in the Presence of Decoherence [J].
Borregaard, J. ;
Sorensen, A. S. .
PHYSICAL REVIEW LETTERS, 2013, 111 (09)
[9]   Deterministic Squeezed States with Collective Measurements and Feedback [J].
Cox, Kevin C. ;
Greve, Graham P. ;
Weiner, Joshua M. ;
Thompson, James K. .
PHYSICAL REVIEW LETTERS, 2016, 116 (09)
[10]   Frequency Ratio of Two Optical Clock Transitions in 171Yb+ and Constraints on the Time Variation of Fundamental Constants [J].
Godun, R. M. ;
Nisbet-Jones, P. B. R. ;
Jones, J. M. ;
King, S. A. ;
Johnson, L. A. M. ;
Margolis, H. S. ;
Szymaniec, K. ;
Lea, S. N. ;
Bongs, K. ;
Gill, P. .
PHYSICAL REVIEW LETTERS, 2014, 113 (21)