Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing

被引:1235
作者
Guzy, RD
Hoyos, B
Robin, E
Chen, H
Liu, LP
Mansfield, KD
Simon, MC
Hammerling, U
Schumacker, PT
机构
[1] Univ Chicago, Dept Med, Chicago, IL 60637 USA
[2] Mem Sloan Kettering Canc Ctr, Program Immunol, New York, NY 10021 USA
[3] Univ Penn, Howard Hughes Med Inst, Philadelphia, PA 19104 USA
[4] Univ Penn, Abramson Family Canc Inst, Philadelphia, PA 19104 USA
关键词
D O I
10.1016/j.cmet.2005.05.001
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Multicellular organisms initiate adaptive responses when oxygen (02) availability decreases, but the underlying mechanism Of 02 sensing remains elusive. We find that functionality of complex III of the mitochondrial electron transport chain (ETC) is required for the hypoxic stabilization of HIF-1 alpha and HIF-2 alpha. and that an increase in reactive oxygen species (ROS) links this complex to HIF-alpha. stabilization. Using RNAi to suppress expression of the Rieske iron-sulfur protein of complex III, hypoxia-induced HIF-1 alpha stabilization is attenuated, and ROS production, measured using a novel ROS-sensitive FRET probe, is decreased. These results demonstrate that mitochondria function as O-2 sensors and signal hypoxic HIF-1 alpha and HIF-2 alpha stabilization by releasing ROS to the cytosol.
引用
收藏
页码:401 / 408
页数:8
相关论文
共 29 条
  • [1] Overexpression of catalase in cytosolic or mitochondrial compartment protects HepG2 cells against oxidative injury
    Bai, JX
    Rodriguez, AM
    Melendez, JA
    Cederbaum, AI
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (37) : 26217 - 26224
  • [2] HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1α in normoxia
    Berra, E
    Benizri, E
    Ginouvès, A
    Volmat, V
    Roux, D
    Pouysségur, J
    [J]. EMBO JOURNAL, 2003, 22 (16) : 4082 - 4090
  • [3] Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation
    Brunelle, JK
    Bell, EL
    Quesada, NM
    Vercauteren, K
    Tiranti, V
    Zeviani, M
    Scarpulla, RC
    Chandel, NS
    [J]. CELL METABOLISM, 2005, 1 (06) : 409 - 414
  • [4] Oxygen sensing and molecular adaptation to hypoxia
    Bunn, HF
    Poyton, RO
    [J]. PHYSIOLOGICAL REVIEWS, 1996, 76 (03) : 839 - 885
  • [5] Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia -: A mechanism of O2 sensing
    Chandel, NS
    McClintock, DS
    Feliciano, CE
    Wood, TM
    Melendez, JA
    Rodriguez, AM
    Schumacker, PT
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (33) : 25130 - 25138
  • [6] Mitochondrial reactive oxygen species trigger hypoxia-induced transcription
    Chandel, NS
    Maltepe, E
    Goldwasser, E
    Mathieu, CE
    Simon, MC
    Schumacker, PT
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (20) : 11715 - 11720
  • [7] C-elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation
    Epstein, ACR
    Gleadle, JM
    McNeill, LA
    Hewitson, KS
    O'Rourke, J
    Mole, DR
    Mukherji, M
    Metzen, E
    Wilson, MI
    Dhanda, A
    Tian, YM
    Masson, N
    Hamilton, DL
    Jaakkola, P
    Barstead, R
    Hodgkin, J
    Maxwell, PH
    Pugh, CW
    Schofield, CJ
    Ratcliffe, PJ
    [J]. CELL, 2001, 107 (01) : 43 - 54
  • [8] The serine/threonine kinase Pim-2 is a transcriptionally regulated apoptotic inhibitor
    Fox, CJ
    Hammerman, PS
    Cinalli, RM
    Master, SR
    Chodosh, LA
    Thompson, CB
    [J]. GENES & DEVELOPMENT, 2003, 17 (15) : 1841 - 1854
  • [9] Görlach A, 2003, THROMB HAEMOSTASIS, V89, P926
  • [10] Redistribution of intracellular oxygen in hypoxia by nitric oxide:: Effect on HIF1α
    Hagen, T
    Taylor, CT
    Lam, F
    Moncada, S
    [J]. SCIENCE, 2003, 302 (5652) : 1975 - 1978