Recent research on the photosynthetic mechanisms of plant species in the Chenopodiaceae family revealed that three species, including Bienertia sinuspersici, can carry out C-4 photosynthesis within individual photosynthetic cells, through the development of two cytoplasmic domains having dimorphic chloroplasts. These unusual single-cell C-4 species grow in semi-arid saline conditions and have semi-terete succulent leaves. The effects of salinity on growth and photosynthesis of B. sinuspersici were studied. The results show that NaCl is not required for development of the single-cell C-4 system. There is a large enhancement of growth in culture with 50-200 mM NaCl, while there is severe inhibition at 400 mM NaCl. With increasing salinity, the carbon isotope values (delta C-13) of leaves increased from -17.3(o)/(oo) (C-4-like) without NaCl to -14.6(o)/(oo) (C-4) with 200 mM NaCl, possibly due to increased capture of CO2 from the C-4 cycle by Rubisco and reduced leakiness. Compared to growth without NaCl, leaves of plants grown under saline conditions were much larger (similar to 2 fold) and more succulent, and the leaf solute levels increased up to similar to 2000 mmol kg solvent(-1). Photosynthesis on an incident leaf area basis (CO2 saturated rates, and carboxylation efficiency under limiting CO2) and stomatal conductance declined with increasing salinity. On a leaf area basis, there was some decline in Rubisco content with increasing salinity up to 200 mM NaCl, but there was a marked increase in the levels of pyruvate, Pi dikinase, and phosphoenolpyruvate carboxylase (possibly in response to sensitivity of these enzymes and C-4 cycle function to increasing salinity). The decline in photosynthesis on a leaf area basis was compensated for on a per leaf basis, up to 200 mM NaCl, by the increase in leaf size. The influence of salinity on plant development and the C-4 system in Bienertia is discussed.