Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets
被引:385
作者:
Datta, Abhirup
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Fielding Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Fielding Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90095 USA
Datta, Abhirup
[1
]
Banerjee, Sudipto
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Fielding Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Fielding Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90095 USA
Banerjee, Sudipto
[1
]
Finley, Andrew O.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Fielding Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Fielding Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90095 USA
Finley, Andrew O.
[1
]
Gelfand, Alan E.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Fielding Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Fielding Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90095 USA
Gelfand, Alan E.
[1
]
机构:
[1] Univ Calif Los Angeles, Fielding Sch Publ Hlth, Dept Biostat, Los Angeles, CA 90095 USA
Spatial process models for analyzing geostatistical data entail computations that become prohibitive as the number of spatial locations beconne large. This article develops a class of highly scalable nearest-neighbor Gaussian process (NNGP) models to provide fully model-based inference for large geostatistical datasets. We establish that the NNGP is a well-defined spatial process providing legitimate finite-dimensional Gaussian densities with sparse precision matrices. We embed the NNGP as a sparsity-inducing prior within a rich hierarchical modeling framework and outline how computationally efficient Markov chain Monte Carlo (MCMC) algorithms can be executed without storing or decomposing large matrices. The floating point operations (flops) per iteration of this algorithm is linear in the number of spatial locations, thereby rendering substantial scalability. We illustrate the computational and inferential benefits of the NNGP over competing methods using simulation studies and also analyze forest biomass from a massive US. Forest Inventory dataset at a scale that precludes alternative dimension-reducing methods. Supplementary materials for this article are available online.
机构:
Michigan State Univ, Dept Forestry, E Lansing, MI 48824 USA
Michigan State Univ, Dept Geog, E Lansing, MI 48824 USAMichigan State Univ, Dept Forestry, E Lansing, MI 48824 USA
Finley, Andrew O.
;
Banerjee, Sudipto
论文数: 0引用数: 0
h-index: 0
机构:
Univ Minnesota, Sch Publ Hlth, Div Biostat, Minneapolis, MN 55455 USAMichigan State Univ, Dept Forestry, E Lansing, MI 48824 USA
Banerjee, Sudipto
;
McRoberts, Ronald E.
论文数: 0引用数: 0
h-index: 0
机构:
US Forest Serv, No Res Stn, USDA, St Paul, MN USAMichigan State Univ, Dept Forestry, E Lansing, MI 48824 USA
机构:
Michigan State Univ, Dept Forestry, E Lansing, MI 48824 USA
Michigan State Univ, Dept Geog, E Lansing, MI 48824 USAMichigan State Univ, Dept Forestry, E Lansing, MI 48824 USA
Finley, Andrew O.
;
Banerjee, Sudipto
论文数: 0引用数: 0
h-index: 0
机构:
Univ Minnesota, Sch Publ Hlth, Div Biostat, Minneapolis, MN 55455 USAMichigan State Univ, Dept Forestry, E Lansing, MI 48824 USA
Banerjee, Sudipto
;
McRoberts, Ronald E.
论文数: 0引用数: 0
h-index: 0
机构:
US Forest Serv, No Res Stn, USDA, St Paul, MN USAMichigan State Univ, Dept Forestry, E Lansing, MI 48824 USA