Automatic Identification of Mantle Seismic Phases Using a Convolutional Neural Network

被引:13
作者
Garcia, J. A. [1 ]
Waszek, L. [1 ,2 ]
Tauzin, B. [3 ,4 ,5 ]
Schmerr, N. [6 ]
机构
[1] New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA
[2] James Cook Univ, Phys Sci, Douglas, Qld, Australia
[3] Univ Lyon, Lab Geol Lyon Terre Planastes Environm, Univ Lyon 1, Villeurbanne, France
[4] Ecole Normale Super Lyon, UMR CNRS 5276, Villeurbanne, France
[5] Australian Natl Univ, Res Sch Earth Sci, Canberra, ACT, Australia
[6] Univ Maryland, Dept Geol, College Pk, MD 20742 USA
基金
澳大利亚研究理事会;
关键词
Body waves; computational seismology; fuzzy logic; machine learning; mantle; neural networks; SYSTEM MG2SIO4-FE2SIO4; DISCONTINUITIES; LOCATION; PICKING;
D O I
10.1029/2020GL091658
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Typical seismic waveform data sets comprise hundreds of thousands to millions of records. Compilation is performed by time-consuming handpicking of phase arrival times, or signal processing algorithms such as cross-correlation. The latter generally underperform compared to handpicking. However, differences in picking methods creates variations in models and interpretation of Earth's structure. Here, we exploit the pattern recognition capabilities of Convolutional Neural Networks (CNN). Using a large handpicked data set, we train a CNN model to identify the seismic shear phase SS. This accelerates, automates, and makes consistent data compilation, a task usually completed by visual inspection and influenced by scientists' choices. The CNN model is employed to identify precursors to SS generated by mantle discontinuities. It identifies precursors in stacked and individual seismograms, producing new measurements of the mantle transition zone with quality comparable to handpicked data. This rapid acquisition of high-quality observations has implications for automation of future seismic tomography studies.
引用
收藏
页数:9
相关论文
共 50 条
[41]   Deep Convolutional Neural Network With Attention Module for Seismic Impedance Inversion [J].
Dodda, Vineela Chandra ;
Kuruguntla, Lakshmi ;
Mandpura, Anup Kumar ;
Elumalai, Karthikeyan ;
Sen, Mrinal K. .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 :8076-8086
[42]   PhasePApy: A Robust Pure Python']Python Package for Automatic Identification of Seismic Phases [J].
Chen, Chen ;
Holland, Austin A. .
SEISMOLOGICAL RESEARCH LETTERS, 2016, 87 (06) :1384-1396
[43]   Detection of active and inactive phases of thyroid-associated ophthalmopathy using deep convolutional neural network [J].
Chenyi Lin ;
Xuefei Song ;
Lunhao Li ;
Yinwei Li ;
Mengda Jiang ;
Rou Sun ;
Huifang Zhou ;
Xianqun Fan .
BMC Ophthalmology, 21
[44]   Seismic model low wavenumber extrapolation by a deep convolutional neural network [J].
Plotnitskii P. ;
Alkhalifah T. ;
Ovcharenko O. ;
Kazei V. .
Exploration Geophysics, 2019, 2019 (01) :1-5
[45]   Detection of active and inactive phases of thyroid-associated ophthalmopathy using deep convolutional neural network [J].
Lin, Chenyi ;
Song, Xuefei ;
Li, Lunhao ;
Li, Yinwei ;
Jiang, Mengda ;
Sun, Rou ;
Zhou, Huifang ;
Fan, Xianqun .
BMC OPHTHALMOLOGY, 2021, 21 (01)
[46]   AUTOMATIC PICKING OF SEISMIC ARRIVALS IN LOCAL EARTHQUAKE DATA USING AN ARTIFICIAL NEURAL-NETWORK [J].
DAI, HC ;
MACBETH, C .
GEOPHYSICAL JOURNAL INTERNATIONAL, 1995, 120 (03) :758-774
[47]   Iris Recognition Using Convolutional Neural Network [J].
Zhuang, Yuan ;
Chuah, Joon Huang ;
Chow, Chee Onn ;
Lim, Marcus Guozong .
2020 IEEE 10TH INTERNATIONAL CONFERENCE ON SYSTEM ENGINEERING AND TECHNOLOGY (ICSET), 2020, :134-138
[48]   Classification of Plants Using Convolutional Neural Network [J].
Saini, Gurinder ;
Khamparia, Aditya ;
Luhach, Ashish Kumar .
FIRST INTERNATIONAL CONFERENCE ON SUSTAINABLE TECHNOLOGIES FOR COMPUTATIONAL INTELLIGENCE, 2020, 1045 :551-561
[49]   Automatic Pearl Classification Machine Based on a Multistream Convolutional Neural Network [J].
Xuan, Qi ;
Fang, Binwei ;
Liu, Yi ;
Wang, Jinbao ;
Zhang, Jian ;
Zheng, Yayu ;
Bao, Guanjun .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (08) :6538-6547
[50]   Convolutional Neural Network With Automatic Learning Rate Scheduler for Fault Classification [J].
Wen, Long ;
Gao, Liang ;
Li, Xinyu ;
Zeng, Bing .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71 :13-13