Automatic Identification of Mantle Seismic Phases Using a Convolutional Neural Network

被引:13
作者
Garcia, J. A. [1 ]
Waszek, L. [1 ,2 ]
Tauzin, B. [3 ,4 ,5 ]
Schmerr, N. [6 ]
机构
[1] New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA
[2] James Cook Univ, Phys Sci, Douglas, Qld, Australia
[3] Univ Lyon, Lab Geol Lyon Terre Planastes Environm, Univ Lyon 1, Villeurbanne, France
[4] Ecole Normale Super Lyon, UMR CNRS 5276, Villeurbanne, France
[5] Australian Natl Univ, Res Sch Earth Sci, Canberra, ACT, Australia
[6] Univ Maryland, Dept Geol, College Pk, MD 20742 USA
基金
澳大利亚研究理事会;
关键词
Body waves; computational seismology; fuzzy logic; machine learning; mantle; neural networks; SYSTEM MG2SIO4-FE2SIO4; DISCONTINUITIES; LOCATION; PICKING;
D O I
10.1029/2020GL091658
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Typical seismic waveform data sets comprise hundreds of thousands to millions of records. Compilation is performed by time-consuming handpicking of phase arrival times, or signal processing algorithms such as cross-correlation. The latter generally underperform compared to handpicking. However, differences in picking methods creates variations in models and interpretation of Earth's structure. Here, we exploit the pattern recognition capabilities of Convolutional Neural Networks (CNN). Using a large handpicked data set, we train a CNN model to identify the seismic shear phase SS. This accelerates, automates, and makes consistent data compilation, a task usually completed by visual inspection and influenced by scientists' choices. The CNN model is employed to identify precursors to SS generated by mantle discontinuities. It identifies precursors in stacked and individual seismograms, producing new measurements of the mantle transition zone with quality comparable to handpicked data. This rapid acquisition of high-quality observations has implications for automation of future seismic tomography studies.
引用
收藏
页数:9
相关论文
共 50 条
[21]   Automatic inspection and analysis of digital waveform images by means of convolutional neural networks [J].
Pignatelli, Alessandro ;
D'Ajello Caracciolo, Francesca ;
Console, Rodolfo .
JOURNAL OF SEISMOLOGY, 2021, 25 (06) :1347-1359
[22]   Semiautomated seismic horizon interpretation using the encoder-decoder convolutional neural network [J].
Wu, Hao ;
Zhang, Bo ;
Lin, Tengfei ;
Cao, Danping ;
Lou, Yihuai .
GEOPHYSICS, 2019, 84 (06) :B403-B417
[23]   A Patch Based Denoising Method Using Deep Convolutional Neural Network for Seismic Image [J].
Zhang, Yushu ;
Lin, Hongbo ;
Li, Yue ;
Ma, Haitao .
IEEE ACCESS, 2019, 7 :156883-156894
[24]   Automatic detection of woody vegetation in repeat landscape photographs using a convolutional neural network [J].
Bayr, Ulrike ;
Puschmann, Oskar .
ECOLOGICAL INFORMATICS, 2019, 50 :220-233
[25]   Visual Field Based Automatic Diagnosis of Glaucoma Using Deep Convolutional Neural Network [J].
Li, Fei ;
Wang, Zhe ;
Qu, Guoxiang ;
Qiao, Yu ;
Zhang, Xiulan .
COMPUTATIONAL PATHOLOGY AND OPHTHALMIC MEDICAL IMAGE ANALYSIS, 2018, 11039 :285-293
[26]   An Automatic Convolutional Neural Network Optimization Using a Diversity-Guided Genetic Algorithm [J].
Fatyanosa, Tirana Noor ;
Aritsugi, Masayoshi .
IEEE ACCESS, 2021, 9 :91410-91426
[27]   Fish species identification using a convolutional neural network trained on synthetic data [J].
Allken, Vaneeda ;
Handegard, Nils Olav ;
Rosen, Shale ;
Schreyeck, Tiffanie ;
Mahiout, Thomas ;
Malde, Ketil .
ICES JOURNAL OF MARINE SCIENCE, 2019, 76 (01) :342-349
[28]   Structural Damage Identification Using Ensemble Deep Convolutional Neural Network Models [J].
Barkhordari, Mohammad Sadegh ;
Armaghani, Danial Jahed ;
Asteris, Panagiotis G. .
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 134 (02) :835-855
[29]   Identification of supraventricular tachycardia mechanisms with surface electrocardiograms using a convolutional neural network [J].
Higuchi, Satoshi ;
Li, Roland ;
Gerstenfeld, Edward P. ;
Liem, L. Bing ;
Im, Sung Il ;
Kalantarian, Shadi ;
Ansari, Minhaj ;
Abreau, Sean ;
Barrios, Joshua ;
Scheinman, Melvin M. ;
Tison, Geoffrey H. .
HEART RHYTHM O2, 2023, 4 (08) :491-499
[30]   Detection and Identification of Rice Pests Using Memory Efficient Convolutional Neural Network [J].
Nayem, Zihad Hossain ;
Jahan, Md. Iqbal ;
Rakib, Abdul Aziz ;
Mia, Md. Solaiman .
2023 INTERNATIONAL CONFERENCE ON COMPUTER, ELECTRICAL & COMMUNICATION ENGINEERING, ICCECE, 2023,