New results on the existence of ground state solutions for generalized quasilinear Schrodinger equations coupled with the Chern-Simons gauge theory

被引:3
作者
Xiao, Yingying [1 ,2 ]
Zhu, Chuanxi [1 ]
机构
[1] Nanchang Univ, Dept Math, Nanchang 330031, Jiangxi, Peoples R China
[2] Nanchang JiaoTong Inst, Nanchang 330031, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
gauged Schrodinger equation; Pohozaev identity; ground state solutions; STANDING WAVES; SYSTEM;
D O I
10.14232/ejqtde.2021.1.73
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following quasilinear Schrodinger equation -Delta u + V(x)u-ku Delta(u(2)) + mu h(2)(vertical bar x vertical bar)/vertical bar x vertical bar(2) (1 + ku(2))u + mu(integral(+infinity)(vertical bar x vertical bar) h(s)/s (2 + ku(2)(s))u(2)(s)ds) u = f (u) in R-2, where k > 0, mu > 0, V is an element of C-1 (R-2, R) and f is an element of C(R, R). By using a constraint minimization of Pohozaev-Nehari type and analytic techniques, we obtain the existence of ground state solutions.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 35 条
[1]   On standing waves with a vortex point of order N for the nonlinear Chern-Simons-Schrodinger equations [J].
Byeon, Jaeyoung ;
Huh, Hyungjin ;
Seok, Jinmyoung .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (02) :1285-1316
[2]   Standing waves of nonlinear Schrodinger equations with the gauge field [J].
Byeon, Jaeyoung ;
Huh, Hyungjin ;
Seok, Jinmyoung .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (06) :1575-1608
[3]   Existence and concentration of semiclassical ground state solutions for the generalized Chern-Simons-Schrodinger system in H1 (R2) [J].
Chen, Sitong ;
Zhang, Binlin ;
Tang, Xianhua .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 185 :68-96
[4]   Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity [J].
Chen, Sitong ;
Zhang, Binlin ;
Tang, Xianhua .
ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) :148-167
[5]   AN IMPROVED RESULT ON GROUND STATE SOLUTIONS OF QUASILINEAR SCHRODINGER EQUATIONS WITH SUPER-LINEAR NONLINEARITIES [J].
Chen, Sitong ;
Gao, Zu .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2019, 99 (02) :231-241
[6]   Sign-changing multi-bump solutions for the Chern-Simons-Schrodinger equations in R2 [J].
Chen, Zhi ;
Tang, Xianhua ;
Zhang, Jian .
ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) :1066-1091
[7]   A multiplicity result for Chern-Simons-Schrodinger equation with a general nonlinearity [J].
Cunha, Patricia L. ;
d'Avenia, Pietro ;
Pomponio, Alessio ;
Siciliano, Gaetano .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2015, 22 (06) :1831-1850
[8]   Standing waves of modified Schrodinger equations coupled with the Chern-Simons gauge theory [J].
d'Avenia, Pietro ;
Pomponio, Alessio ;
Watanabe, Tatsuya .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (04) :1915-1936
[9]   Nodal standing waves for a gauged nonlinear Schrodinger equation in R2 [J].
Deng, Yinbin ;
Peng, Shuangjie ;
Shuai, Wei .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (06) :4006-4035
[10]   Energy Solution to the Chern-Simons-Schrodinger Equations [J].
Huh, Hyungjin .
ABSTRACT AND APPLIED ANALYSIS, 2013,