Human Pluripotent Stem Cell Tools for Cardiac Optogenetics

被引:0
作者
Yan Zhuge
Patlolla, Bhagat
Ramakrishnan, Charu
Beygui, Ramin E.
Zarins, Christopher K.
Deisseroth, Karl
Kuhl, Ellen
Abilez, Oscar J. [1 ,2 ]
机构
[1] Stanford Univ, Cardiovasc Med Div, BioX Program, Stanford, CA 94305 USA
[2] Stanford Univ, Cardiovasc Inst, Stanford, CA 94305 USA
来源
2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC) | 2014年
基金
美国国家科学基金会;
关键词
OPTICAL CONTROL; CALCIUM; MODELS;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
It is likely that arrhythmias should be avoided for therapies based on human pluripotent stem cell (hPSC)-derived cardiomyocytes (CM) to be effective. Towards achieving this goal, we introduced light-activated channelrhodopsin-2 (ChR2), a cation channel activated with 480 nm light, into human embryonic stem cells (hESC). By using in vitro approaches, hESC-CM are able to be activated with light. ChR2 is stably transduced into undifferentiated hESC via a lentiviral vector. Via directed differentiation, hESC(ChR2)-CM are produced and subjected to optical stimulation. hESC(ChR2)-CM respond to traditional electrical stimulation and produce similar contractility features as their wild-type counterparts but only hESC(ChR2)-CM can be activated by optical stimulation. Here it is shown that a light sensitive protein can enable in vitro optical control of hESC-CM and that this activation occurs optimally above specific light stimulation intensity and pulse width thresholds. For future therapy, in vivo optical stimulation along with optical inhibition could allow for acute synchronization of implanted hPSC-CM with patient cardiac rhythms.
引用
收藏
页码:6171 / 6174
页数:4
相关论文
共 23 条
[1]  
Abilez OJ, 2013, IEEE ENG MED BIO, P1619, DOI 10.1109/EMBC.2013.6609826
[2]  
Abilez OJ, 2012, IEEE ENG MED BIO, P1386, DOI 10.1109/EMBC.2012.6346197
[3]   Multiscale Computational Models for Optogenetic Control of Cardiac Function [J].
Abilez, Oscar J. ;
Wong, Jonathan ;
Prakash, Rohit ;
Deisseroth, Karl ;
Zarins, Christopher K. ;
Kuhl, Ellen .
BIOPHYSICAL JOURNAL, 2011, 101 (06) :1326-1334
[4]   Optogenetic Control of Cardiac Function [J].
Arrenberg, Aristides B. ;
Stainier, Didier Y. R. ;
Baier, Herwig ;
Huisken, Jan .
SCIENCE, 2010, 330 (6006) :971-974
[5]  
Balint R, 2013, TISSUE ENG PART B-RE, V19, P48, DOI [10.1089/ten.TEB.2012.0183, 10.1089/ten.teb.2012.0183]
[6]   Millisecond-timescale, genetically targeted optical control of neural activity [J].
Boyden, ES ;
Zhang, F ;
Bamberg, E ;
Nagel, G ;
Deisseroth, K .
NATURE NEUROSCIENCE, 2005, 8 (09) :1263-1268
[7]   Optogenetic control of heart muscle in vitro and in vivo [J].
Bruegmann, Tobias ;
Malan, Daniela ;
Hesse, Michael ;
Beiert, Thomas ;
Fuegemann, Christopher J. ;
Fleischmann, Bernd K. ;
Sasse, Philipp .
NATURE METHODS, 2010, 7 (11) :897-U45
[8]   Optical Control of Muscle Function by Transplantation of Stem Cell-Derived Motor Neurons in Mice [J].
Bryson, J. Barney ;
Machado, Carolina Barcellos ;
Crossley, Martin ;
Stevenson, Danielle ;
Bros-Facer, Virginie ;
Burrone, Juan ;
Greensmith, Linda ;
Lieberam, Ivo .
SCIENCE, 2014, 344 (6179) :94-97
[9]   Regenerative medicine and human models of human disease [J].
Chien, Kenneth R. .
NATURE, 2008, 453 (7193) :302-305
[10]   Molecular and Cellular Approaches for Diversifying and Extending Optogenetics [J].
Gradinaru, Viviana ;
Zhang, Feng ;
Ramakrishnan, Charu ;
Mattis, Joanna ;
Prakash, Rohit ;
Diester, Ilka ;
Goshen, Inbal ;
Thompson, Kimberly R. ;
Deisseroth, Karl .
CELL, 2010, 141 (01) :154-165