Crystal of affine type (A)over-capl-1 and Hecke algebras at aprimitive 2lth root of unity

被引:2
|
作者
Lin, Huang [1 ]
Hu, Jun [2 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Peoples R China
[2] Beijing Inst Technol, Sch Math & Stat, Key Lab Math Theory & Computat Informat Secur, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Affine Hecke algebras; Iwahori-Hecke algebras; Crystal structure; Affine sl(l); SIMPLE MODULES; BASES;
D O I
10.1016/j.jalgebra.2021.09.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let l is an element of Nwith l > 1. In this paper we give a new realization of the crystal of affine type A(l-1)using the modular representation theory of the affine Hecke algebras H-n of type A and their level two cyclotomic quotients with Hecke parameter being a primitive 2lth root of unity. We construct "hat" versions of i-induction and i-restriction functors on the category RepI(H-n) of finite dimensional integral modules over H-n, which induce Kashiwara operators on a suitable subgroup of the Grothendieck groups of Rep(I)(H-n). For any simple module M is an element of RepI(H-n), we prove that the simple submodules of res(Hn)(Hn) - 2M which belong to B(infinity)( Definition5.1) occur with multiplicity two. The main results generalize the earlier work of Grojnowski and Vazirani on the relations between the crystal of sl(l) and the affine Hecke algebras of type Aat a primitive lth root of unity. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:51 / 81
页数:31
相关论文
共 1 条
  • [1] Crystal of Affine (s)over-capll and Modular Branching Rules for Hecke Algebras of Type Dn
    Lin, Huang
    Hu, Jun
    FRONTIERS OF MATHEMATICS, 2023, 18 (02): : 277 - 306