A mortar finite element approximation for the linear Poisson-Boltzmann equation

被引:8
作者
Chen, WB [1 ]
Shen, YF
Xia, Q
机构
[1] Fudan Univ, Dept Math, Shanghai 200433, Peoples R China
[2] Fudan Univ, Dept Comp Sci & Engn, Shanghai 200433, Peoples R China
[3] Fudan Univ, Inst Math, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
Poisson-Boltzmann equation; mortar finite element; fundamental solution; artificial boundary;
D O I
10.1016/j.amc.2004.04.058
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a new numerical method is presented for solving the linear Poisson-Boltzmann equation. A mortar finite element method with fundamental solution and artificial boundary condition are used to deal with the difficulties in numerical simulation and optimal error estimates are obtained. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:11 / 23
页数:13
相关论文
共 12 条
[1]  
Adams R., 1975, Sobolev space
[2]  
Baker N, 2000, J COMPUT CHEM, V21, P1343, DOI 10.1002/1096-987X(20001130)21:15<1343::AID-JCC2>3.0.CO
[3]  
2-K
[4]  
Brenner S. C., 2007, Texts Appl. Math., V15
[5]  
CHERN IL, 2002, FAST EVALUATION ELEC
[6]  
CORTIS CM, 1996, NUMERICAL SOLUTION P
[7]   Error estimates for the finite element approximation of problems in unbounded domains [J].
Han, H ;
Bao, WH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (04) :1101-1119
[8]   MULTIGRID SOLUTION OF THE POISSON-BOLTZMANN EQUATION [J].
HOLST, M ;
SAIED, F .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1993, 14 (01) :105-113
[9]  
HOLST M, 1993, THESIS U ILLINOIS UR
[10]   A mortar element method for elliptic problems with discontinuous coefficients [J].
Huang, JG ;
Zou, J .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2002, 22 (04) :549-576