Revealing tribo-oxidation mechanisms of the copper-WC system under high tribological loading

被引:16
作者
Chen, X. [1 ]
Ma, Y. [2 ,3 ]
Yang, Y. [1 ]
Meng, A. [1 ]
Han, Z. X. [4 ]
Han, Z. [4 ]
Zhao, Y. H. [1 ]
机构
[1] Nanjing Univ Sci & Technol, Nano & Heterogeneous Mat Ctr, Sch Mat Sci & Engn, Nanjing 210094, Peoples R China
[2] Rhein Westfal TH Aachen, Steel Inst IEHK, Intzestr 1, D-52072 Aachen, Germany
[3] Max Planck Inst Eisenforsch GmbH MPIE, Max Planck Str 1, D-40237 Dusseldorf, Germany
[4] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Peoples R China
基金
中国国家自然科学基金;
关键词
Tribology; Oxidation; Transmission electron microscopy (TEM); Atom probe tomography; Copper; DEFORMATION MECHANISMS; FRICTION; WEAR; EVOLUTION; BEHAVIOR;
D O I
10.1016/j.scriptamat.2021.114142
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The near-surface structural and chemical changes were investigated for pure copper against a tungsten carbide (WC) sphere during high tribological loading. Fundamental stages are identified in the Cu-WC tribo-system: (i) high tribological stress promotes grain refinement to the ultra-fine grains regime in the very beginning; (ii) nucleation of extremely fine (similar to 3 nm) oxygen-enriched Cu nano particles in the nearsurface layer and subsequent growth of the Cu2O oxide; (iii) formation of continuous nanostructured mixing layer with heterogeneous Cu and O distribution in the late stage. Near-surface mechanical mixing is presumably the main contribution to chemical modifications under high tribological loading. Our findings shed atomic-insights into intricate tribochemical modifications, one of the most intriguing phenomena in material-oriented tribology. (C) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页数:5
相关论文
共 28 条
[1]   Linking microstructural evolution and macro-scale friction behavior in metals [J].
Argibay, N. ;
Chandross, M. ;
Cheng, S. ;
Michael, J. R. .
JOURNAL OF MATERIALS SCIENCE, 2017, 52 (05) :2780-2799
[2]   Dr. Probe: A software for high-resolution STEM image simulation [J].
Barthel, J. .
ULTRAMICROSCOPY, 2018, 193 :1-11
[3]   Friction of stable gradient nano-grained metals [J].
Chen, X. ;
Han, Z. ;
Li, X. Y. ;
Lu, K. .
SCRIPTA MATERIALIA, 2020, 185 (185) :82-87
[4]   Wear mechanism transition dominated by subsurface recrystallization structure in Cu-Al alloys [J].
Chen, X. ;
Han, Z. ;
Lu, K. .
WEAR, 2014, 320 :41-50
[5]   Microstructure evolution and deformation mechanisms during high rate and cryogenic sliding of copper [J].
Chen, Xiang ;
Schneider, Reinhard ;
Gumbsch, Peter ;
Greiner, Christian .
ACTA MATERIALIA, 2018, 161 :138-149
[6]   Lowering coefficient of friction in Cu alloys with stable gradient nanostructures [J].
Chen, Xiang ;
Han, Zhong ;
Li, Xiuyan ;
Lu, K. .
SCIENCE ADVANCES, 2016, 2 (12)
[7]   Revealing Extraordinary Intrinsic Tensile Plasticity in Gradient Nano-Grained Copper [J].
Fang, T. H. ;
Li, W. L. ;
Tao, N. R. ;
Lu, K. .
SCIENCE, 2011, 331 (6024) :1587-1590
[8]   Shear-Induced Surface-to-Bulk Transport at Room Temperature in a Sliding Metal-Metal Interface [J].
Furlong, Octavio J. ;
Miller, Brendan P. ;
Tysoe, Wilfred T. .
TRIBOLOGY LETTERS, 2011, 41 (01) :257-261
[9]   Atomistic details of oxide surfaces and surface oxidation: the example of copper and its oxides [J].
Gattinoni, Chiara ;
Michaelides, Angelos .
SURFACE SCIENCE REPORTS, 2015, 70 (03) :424-447
[10]   Pattern formation during deformation of metallic nanolaminates [J].
Gola, Adrien ;
Schwaiger, Ruth ;
Gumbsch, Peter ;
Pastewka, Lars .
PHYSICAL REVIEW MATERIALS, 2020, 4 (01)