Calculation of absolute free energy of binding for theophylline and its analogs to RNA aptamer using nonequilibrium work values

被引:12
作者
Tanida, Yoshiaki [1 ]
Ito, Masakatsu [1 ]
Fujitani, Hideaki [1 ]
机构
[1] Fujitsu Labs Ltd, Kanagawa, Japan
关键词
absolute free energy calculation; nonequilibrium work theorem; molecular simulation; theophylline; RNA;
D O I
10.1016/j.chemphys.2007.07.014
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The massively parallel computation of absolute binding free energy with a well-equilibrated system (MP-CAFEE) has been developed [H. Fujitani, Y. Tanida, M. Ito, G. Jayachandran, C.D. Snow, MR. Shirts, E.J. Sorin, V.S. Pande, J. Chem. Phys. 123 (2005) 084108]. As an application, we perform the binding affinity calculations of six theophylline-related ligands with RNA aptamer. Basically, our method is applicable when using many compute nodes to accelerate simulations, thus a parallel computing system is also developed. To further reduce the computational cost, the adequate non-uniform intervals of coupling constant lambda, connecting two equilibrium states, namely bound and unbound, are determined. The absolute binding energies Delta G thus obtained have effective linear relation between the computed and experimental values. If the results of two other different methods are compared, thermodynamic integration (TI) and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) by the paper of Gouda et al. [H. Gouda, I.D. Kuntz, D.A. Case, P.A. Kollman, Biopolymers 68 (2003) 16], the predictive accuracy of the relative values Delta Delta G is almost comparable to that of TI: the correlation coefficients (R) obtained are 0.99 (this work), 0.97 (TI), and 0.78 (MM-PBSA). On absolute binding energies meanwhile, a constant energy shift of similar to-7 kcal/mol against the experimental values is evident. To solve this problem, several presumable reasons are investigated. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:135 / 143
页数:9
相关论文
共 56 条
[11]   Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences [J].
Crooks, GE .
PHYSICAL REVIEW E, 1999, 60 (03) :2721-2726
[12]   Path-ensemble averages in systems driven far from equilibrium [J].
Crooks, GE .
PHYSICAL REVIEW E, 2000, 61 (03) :2361-2366
[13]   SIMPLE INTRAMOLECULAR MODEL POTENTIALS FOR WATER [J].
DANG, LX ;
PETTITT, BM .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (12) :3349-3354
[14]   A SMOOTH PARTICLE MESH EWALD METHOD [J].
ESSMANN, U ;
PERERA, L ;
BERKOWITZ, ML ;
DARDEN, T ;
LEE, H ;
PEDERSEN, LG .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (19) :8577-8593
[15]   Direct calculation of the binding free energies of FKBP ligands [J].
Fujitani, H ;
Tanida, Y ;
Ito, M ;
Jayachandran, G ;
Snow, CD ;
Shirts, MR ;
Sorin, EJ ;
Pande, VS .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (08)
[16]   The statistical-thermodynamic basis for computation of binding affinities: A critical review [J].
Gilson, MK ;
Given, JA ;
Bush, BL ;
McCammon, JA .
BIOPHYSICAL JOURNAL, 1997, 72 (03) :1047-1069
[17]   Free energy calculations for theophylline binding to an RNA aptamer: MM-PBSA and comparison of thermodynamic integration methods [J].
Gouda, H ;
Kuntz, ID ;
Case, DA ;
Kollman, PA .
BIOPOLYMERS, 2003, 68 (01) :16-34
[18]   Standard free energy of releasing a localized water molecule from the binding pockets of proteins: Double-decoupling method [J].
Hamelberg, D ;
McCammon, JA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (24) :7683-7689
[19]   A "fast growth" method of computing free energy differences [J].
Hendrix, DA ;
Jarzynski, C .
JOURNAL OF CHEMICAL PHYSICS, 2001, 114 (14) :5974-5981
[20]   Inclusion of loss of translational and rotational freedom in theoretical estimates of free energies of binding. Application to a complex of benzene and mutant T4 lysozyme [J].
Hermans, J ;
Wang, L .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (11) :2707-2714