On the main spectrum of generalized Bethe trees

被引:1
作者
Macedo Franca, Francisca Andrea [1 ]
Brondani, Andre Ebling [1 ]
机构
[1] Fluminense Fed Univ, Dept Math, Volta Redonda, Brazil
关键词
Generalized Bethe tree; Bethe tree; Main eigenvalue; LARGEST EIGENVALUE; GRAPHS; BOUNDS; RADIUS;
D O I
10.1016/j.laa.2021.07.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An eigenvalue of the adjacency matrix of a graph is said to be main if the all-ones vector is not orthogonal to its associated eigenspace. In this paper, we investigate the main eigenvalues of generalized Bethe trees and determine the number of main eigenvalues of some subclasses of these trees. In particular, we characterize the main spectrum of Bethe trees. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:56 / 71
页数:16
相关论文
共 28 条
[1]   Some new aspects of main eigenvalues of graphs [J].
Abreu, Nair ;
Cardoso, Domingos M. ;
Franca, Francisca A. M. ;
Vinagre, Cybele T. M. .
COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (01)
[2]   The main eigenvalues of signed graphs [J].
Akbari, S. ;
Franca, F. A. M. ;
Ghasemian, E. ;
Javarsineh, M. ;
de Lima, L. S. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 614 :270-280
[3]   The cost of segregation in (social) networks [J].
Allouch, Nizar .
GAMES AND ECONOMIC BEHAVIOR, 2017, 106 :329-342
[4]  
[Anonymous], 2008, YUGOSLAV J OPERATION
[5]  
Cvetkovic D., 2010, London Mathematical Society Student Texts, V75
[6]  
Cvetkovic D., 1978, Publ. Inst. Math. (Belgr.), V23, P31
[7]  
Cvetkovic D. M., 1971, Publ. Elektroteh. Fak. Univ. Beogr. Ser. Mat. Fiz., V354, P1
[8]  
del Vecchio R., 2009, Kragujevac J. Sci., V31, P45
[9]   A bound on the spectral radius of graphs in terms of their Zagreb indices [J].
Feng, Lihua ;
Lu, Lu ;
Reti, Tamas ;
Stevanovic, Dragan .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 597 :33-45
[10]  
Fiedler M, 2008, Special matrices and their applications in numerical mathematics