Inference in a multivariate generalized mean-reverting process with a change-point

被引:1
作者
Nkurunziza, Severien [1 ]
Shen, Lei [1 ]
机构
[1] Univ Windsor, Dept Math & Stat, 401 Sunset Ave, Windsor, ON N9B 3P4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Asymptotic normality; Brownian motion; Change-point; Drift-parameter; Multivariate Ornstein-Uhlenbeck process; Testing; SDE; Shrinkage estimators; LINEAR-REGRESSION;
D O I
10.1007/s11203-019-09204-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study inference problem about the drift parameter matrix in multivariate generalized Ornstein-Uhlenbeck processes with an unknown change-point. In particular, we consider the case where the parameter matrix may satisfy some restrictions. Thus, we generalize in five ways some recent findings about univariate generalized Ornstein-Uhlenbeck processes. First, the target parameter is a matrix and we derive a sufficient condition for the existence of the unrestricted estimator (UE) and the restricted estimator (RE). Second, we establish the joint asymptotic normality of the UE and the RE under a collection of local alternatives. Third, we construct a test for testing the uncertain restriction. The proposed test is also useful for testing the absence of the change-point. Fourth, we derive the asymptotic power of the proposed test and we prove that it is consistent. Fifth, we propose the shrinkage estimators (SEs) and we prove that SEs dominate the UE. Finally, we conduct some simulation studies which corroborate our theoretical findings.
引用
收藏
页码:199 / 226
页数:28
相关论文
共 24 条
  • [1] [Anonymous], 2010, Stat. Inference Stoch. Process.
  • [2] Inference for a change-point problem under a generalised Ornstein-Uhlenbeck setting
    Chen, Fuqi
    Mamon, Rogemar
    Nkurunziza, Severien
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2018, 70 (04) : 807 - 853
  • [3] Optimal method in multiple regression with structural changes
    Chen, Fuqi
    Nkurunziza, Severien
    [J]. BERNOULLI, 2015, 21 (04) : 2217 - 2241
  • [4] Dehling H., 2014, Statistical Inference Stochastic Processes, V17, P1, DOI DOI 10.1007/S11203-014-9092-7
  • [5] Gombay E, 2010, CAN J STAT, V38, P65
  • [6] James William, 1961, Proceedings of the fourth Berkeley symposium on mathematical statistics and probability, V1, P361, DOI DOI 10.1007/978-1-4612-0919-5
  • [7] Kutoyants YA., 2004, STAT INFERENCE ERGOD, DOI [10.1007/978-1-4471-3866-2, DOI 10.1007/978-1-4471-3866-2]
  • [8] MULTIVARIATE MODEL OF THE TERM STRUCTURE
    LANGETIEG, TC
    [J]. JOURNAL OF FINANCE, 1980, 35 (01) : 71 - 97
  • [9] Optimal proportional reinsurance and investment in a stock market with Ornstein-Uhlenbeck process
    Liang, Zhibin
    Yuen, Kam Chuen
    Guo, Junyi
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2011, 49 (02) : 207 - 215
  • [10] Liptser R.S., 2001, Applications of Mathematics Stochastic Modelling and Applied Probability Series, V1, DOI 10.1007/978-3-662-10028-8