Colored-descent representations of complex reflection groups G(r, p, n)

被引:20
作者
Bagno, Eli [1 ]
Biagioli, Riccardo
机构
[1] Hebrew Univ Jerusalem, Einstein Inst Math, IL-91904 Jerusalem, Israel
[2] Jerusalem Coll Technol, Jerusalem, Israel
[3] Univ Lyon 1, Inst Camille Jordon, CNRS, UMR 5208, F-69200 Villeurbanne, France
关键词
D O I
10.1007/s11856-007-0065-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the complex reflection groups G(r, p, n). By considering these groups as subgroups of the wreath products Z(r) integral S-n, and by using Clifford theory, we define combinatorial parameters and descent representations of G(r, p, n), previously known for classical Weyl groups. One of these parameters is the flag major index, which also has an important role in the decomposition of these representations into irreducibles. A Carlitz type identity relating the combinatorial parameters with the degrees of the group, is presented.
引用
收藏
页码:317 / 347
页数:31
相关论文
共 31 条