Advances in the use of nanoscale bilayers to study membrane protein structure and function

被引:13
|
作者
Malhotra, Ketan [1 ]
Alder, Nathan N. [1 ]
机构
[1] Univ Connecticut, Dept Mol & Cell Biol, Storrs, CT 06269 USA
来源
BIOTECHNOLOGY AND GENETIC ENGINEERING REVIEWS, VOL 30, ISSUE 1 | 2014年 / 30卷 / 01期
基金
美国国家科学基金会;
关键词
membrane protein; lipid; nanodisc; Lipodisq (R); RESOLUTION STRUCTURE DETERMINATION; PHOSPHOLIPID-BILAYERS; DETERGENT MICELLES; MASS-SPECTROMETRY; LIPID-BILAYERS; NANODISCS; NMR; COMPLEXES; RHODOPSIN; ACTIVATION;
D O I
10.1080/02648725.2014.921502
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Within the last decade, nanoscale lipid bilayers have emerged as powerful experimental systems in the analysis of membrane proteins (MPs) for both basic and applied research. These discoidal lipid lamellae are stabilized by annuli of specially engineered amphipathic polypeptides (nanodiscs) or polymers (SMALPs/Lipodisqs (R)). As biomembrane mimetics, they are well suited for the reconstitution of MPs within a controlled lipid environment. Moreover, because they are water-soluble, they are amenable to solution-based biochemical and biophysical experimentation. Hence, due to their solubility, size, stability, and monodispersity, nanoscale lipid bilayers offer technical advantages over more traditional MP analytic approaches such as detergent solubilization and reconstitution into lipid vesicles. In this article, we review some of the most recent advances in the synthesis of polypeptide-and polymer-bound nanoscale lipid bilayers and their application in the study of MP structure and function.
引用
收藏
页码:79 / 93
页数:15
相关论文
共 50 条
  • [1] Protein-membrane interactions: blood clotting on nanoscale bilayers
    Morrissey, J. H.
    Pureza, V.
    Davis-Harrison, R. L.
    Sligar, S. G.
    Rienstra, C. M.
    Kijac, A. Z.
    Ohkubo, Y. Z.
    Tajkhorshid, E.
    JOURNAL OF THROMBOSIS AND HAEMOSTASIS, 2009, 7 : 169 - 172
  • [2] Use of amphipathic polymers to deliver a membrane protein to lipid bilayers
    Nagy, JK
    Hoffmann, AK
    Keyes, MH
    Gray, DN
    Oxenoid, K
    Sanders, CR
    FEBS LETTERS, 2001, 501 (2-3) : 115 - 120
  • [3] Recent advances in nanodisc technology for membrane protein studies (2012-2017)
    Rouck, John E.
    Krapf, John E.
    Roy, Jahnabi
    Huff, Hannah C.
    Das, Aditi
    FEBS LETTERS, 2017, 591 (14) : 2057 - 2088
  • [4] Memtein: The fundamental unit of membrane-protein structure and function
    Overduin, Michael
    Esmaili, Mansoore
    CHEMISTRY AND PHYSICS OF LIPIDS, 2019, 218 : 73 - 84
  • [5] Squaring off with G protein-coupled receptors function in polymer nanoscale lipid bilayers
    Soubias, Olivier
    BIOPHYSICAL JOURNAL, 2021, 120 (20) : 4299 - 4300
  • [6] The use of SMALPs as a novel membrane protein scaffold for structure study by negative stain electron microscopy
    Postis, Vincent
    Rawson, Shaun
    Mitchell, Jennifer K.
    Lee, Sarah C.
    Parslow, Rosemary A.
    Dafforn, Tim R.
    Baldwin, Stephen A.
    Muench, Stephen P.
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2015, 1848 (02): : 496 - 501
  • [7] Influence of the lipid membrane environment on structure and activity of the outer membrane protein Ail from Yersinia pestis
    Ding, Yi
    Fujimoto, L. Miya
    Yao, Yong
    Plano, Gregory V.
    Marassi, Francesca M.
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2015, 1848 (02): : 712 - 720
  • [8] Regulation of membrane protein structure and function by their lipid nano-environment
    Levental, Ilya
    Lyman, Ed
    NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2023, 24 (02) : 107 - 122
  • [9] Helical structure of phospholamban in membrane bilayers
    Smith, SO
    Kawakami, T
    Liu, W
    Ziliox, M
    Aimoto, S
    JOURNAL OF MOLECULAR BIOLOGY, 2001, 313 (05) : 1139 - 1148
  • [10] Engineering extended membrane scaffold proteins for self-assembly of soluble nanoscale lipid bilayers
    Grinkova, Yelena V.
    Denisov, Ilia G.
    Sligar, Stephen G.
    PROTEIN ENGINEERING DESIGN & SELECTION, 2010, 23 (11) : 843 - 848