Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations

被引:149
作者
Chen, GQ
Perthame, B
机构
[1] Ecole Normale Super, UMR 8553, Dept Math & Applicat, F-75230 Paris 05, France
[2] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2003年 / 20卷 / 04期
基金
美国国家科学基金会;
关键词
kinetic solutions; entropy solutions; kinetic formulation; degenerate parabolic equations; convection-diffusion; non-isotropic diffusion; stability; existence; well-posedness;
D O I
10.1016/S0294-1449(02)00014-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a well-posedness theory for solutions in L-1 to the Cauchy problem of general degenerate parabolic-hyperbolic equations with non-isotropic nonlinearity. A new notion of entropy and kinetic solutions and a corresponding kinetic formulation are developed which extends the hyperbolic case. The notion of kinetic solutions applies to more general situations than that of entropy solutions; and its advantage is that the kinetic equations in the kinetic formulation are well defined even when the macroscopic fluxes are not locally integrable, so that L-1 is a natural space on which the kinetic solutions are posed. Based on this notion, we develop a new, simpler, more effective approach to prove the contraction property of kinetic solutions in L-1, especially including entropy solutions. It includes a new ingredient, a chain rule type condition, which makes it different from the isotropic case. (C) 2003 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:645 / 668
页数:24
相关论文
共 24 条
[11]   CONTINUITY OF WEAK SOLUTIONS TO CERTAIN SINGULAR PARABOLIC EQUATIONS [J].
DIBENEDETTO, E .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1982, 130 :131-176
[12]   INCOMPLETE ITERATION FOR TIME-STEPPING A GALERKIN METHOD FOR A QUASILINEAR PARABOLIC PROBLEM [J].
DOUGLAS, J ;
DUPONT, T ;
EWING, RE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (03) :503-522
[13]  
ESPEDAL MS, 2000, LECT NOTES MATH, V1734
[14]  
EYMARD R, 1995, CHINESE ANN MATH B, V16, P1
[15]  
EYMARD R, 2001, CONVERGENCE FINITE V
[16]  
Gilbarg D., 1997, ELLIPTIC PARTIAL DIF
[17]  
Gilding B., 1989, ANN SCUOLA NORM-SCI, V16, P165
[18]   Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients [J].
Karlsen, KH ;
Risebro, NH .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (02) :239-269
[19]  
Kruzkov SN, 1970, Mat. Sb. (N.S.), V10, P217, DOI [10.1070/SM1970v010n02ABEH002156, DOI 10.1070/SM1970V010N02ABEH002156]
[20]  
LIONS PL, 1991, CR ACAD SCI I-MATH, V312, P97