Habitable Trinity

被引:51
作者
Dohm, James M. [1 ]
Maruyama, Shigenori [1 ]
机构
[1] Tokyo Inst Technol, Earth Life Sci Inst, Meguro Ku, Tokyo 1528551, Japan
关键词
Atmosphere; Habitable Trinity; Landmass; Ocean; Sun;
D O I
10.1016/j.gsf.2014.01.005
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Habitable Trinity is a newly proposed concept of a habitable environment. This concept indicates that the coexistence of an atmosphere (consisting largely of C and N), an ocean (H and 0), and a landmass (supplier of nutrients) accompanying continuous material circulation between these three components driven by the Sun is one of the minimum requirements for life to emerge and evolve. The life body consists of C, 0, H, N and other various nutrients, and therefore, the presence of water, only, is not a sufficient condition. Habitable Trinity environment must be maintained to supply necessary components for life body. Our Habitable Trinity concept can also be applied to other planets and moons such as Mars, Europa, Titan, and even exoplanets as a useful index in the quest for life-containing planetary bodies. (C) 2014, China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V. All rights reserved.
引用
收藏
页码:95 / 101
页数:7
相关论文
共 57 条
[1]  
Abe Y., Matsui T., Evolution of an impact-generated H<sub>2</sub>O-CO<sub>2</sub> atmosphere and formation of a hot proto-ocean on Earth, Journal of the Atmospheric Sciences, 45, pp. 3081-3101, (1988)
[2]  
Atreya S.K., Adams E.Y., Niemann H.B., Demick-Montelara J.E., Owen T.C., Fulchignoni M., Ferri F., Wilson E.H., Titan's methane cycle, Planetary and Space Science, 54, pp. 1177-1187, (2006)
[3]  
Baker V.R., Maruyama S., Dohm J.M., Tharsis superplume and the geological evolution of early Mars, Superplumes: Beyond Plate Tectonics, pp. 507-523, (2007)
[4]  
Borucki W.J., McKay C.P., Whitten R.C., Possible production by lightning of aerosols and trace gases in Titan's atmosphere, Icarus, 60, pp. 260-273, (1984)
[5]  
Boston P.J., Biofilms: Encyclopedia of Cave and Karst Science, pp. 145-147, (2003)
[6]  
Boston P.J., Extraterrestrial Caves: Encyclopedia of Cave and Karst Science, pp. 355-358, (2003)
[7]  
Boston P.J., Spilde M.N., Northup D.E., Melim L.A., Soroka D.S., Kleina L.G., Lavoie K.H., Hose L.D., Mallory L.M., Dahm C.N., Crossey L.J., Schelble R.T., Cave biosignature suites: Microbes, minerals and Mars, Astrobiology, 1, pp. 25-56, (2001)
[8]  
Carr M.H., Belton M.J.S., Chapman C.R., Davies A.S., Geissler P., Greenberg R., McEwen A.S., Tufts B.R., Greeley R., Sullivan R., Head J.W., Pappalardo R.T., Klaasen K.P., Johnson T.V., Kaufman J., Senske D., Moore J., Neukum G., Schubert G., Burns J.A., Thomas P., Veverka J., Evidence for a subsurface ocean on Europa, Nature, 391, pp. 363-365, (1998)
[9]  
Cease A.J., Elser J.J., Biological stoichiometry, Nature Education Knowledge, 4, (2013)
[10]  
Cleland C.F., Chyba C.F., Defining life, Origins of Life and Evolution of Biospheres, 32, pp. 387-393, (2002)