CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme

被引:133
作者
Michno, Jean-Michel [1 ]
Wang, Xiaobo [1 ,2 ]
Liu, Junqi [1 ]
Curtin, Shaun J. [1 ,3 ]
Kono, Thomas J. Y. [1 ]
Stupar, Robert M. [1 ]
机构
[1] Univ Minnesota, Dept Agron & Plant Genet, St Paul, MN USA
[2] Anhui Agr Univ, Sch Agron, Hefei, Peoples R China
[3] Univ Minnesota, Dept Plant Pathol, St Paul, MN USA
来源
GM CROPS & FOOD-BIOTECHNOLOGY IN AGRICULTURE AND THE FOOD CHAIN | 2015年 / 6卷 / 04期
基金
美国国家科学基金会;
关键词
CRISPR/Cas9; genome engineering; hairy roots; Medicago; soybean; targeted mutagenesis; RNA; ARABIDOPSIS; MULTIPLEX; CLEAVAGE; SEQUENCE; SYSTEM; ROOTS;
D O I
10.1080/21645698.2015.1106063
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The CRISPR/Cas9 system is rapidly becoming the reagent of choice for targeted mutagenesis and gene editing in crop species. There are currently intense research efforts in the crop sciences to identify efficient CRISPR/Cas9 platforms to carry out targeted mutagenesis and gene editing projects. These efforts typically result in the incremental tweaking of various platform components including the identification of crop-specific promoters and terminators for optimal expression of the Cas9 enzyme and identification of promoters for expression of the CRISPR guide RNA. In this report, we demonstrate the development of an online web tool for fast identification of CRISPR/Cas9 target loci within soybean gene models, and generic DNA sequences. The web-tool described in this work can quickly identify a high number of potential CRISPR/Cas9 target sites, including restriction enzyme sites that can facilitate the detection of new mutations. In conjunction with the web tool, a soybean codon-optimized CRISPR/Cas9 platform was designed to direct double-stranded breaks to the targeted loci in hairy root transformed cells. The modified Cas9 enzyme was shown to successfully mutate target genes in somatic cells of 2 legume species, soybean and Medicago truncatula. These new tools may help facilitate targeted mutagenesis in legume and other plant species.
引用
收藏
页码:243 / 252
页数:10
相关论文
共 33 条
[1]   Enabling plant synthetic biology through genome engineering [J].
Baltes, Nicholas J. ;
Voytas, Daniel F. .
TRENDS IN BIOTECHNOLOGY, 2015, 33 (02) :120-131
[2]   CRISPR-Cas Systems in Bacteria and Archaea: Versatile Small RNAs for Adaptive Defense and Regulation [J].
Bhaya, Devaki ;
Davison, Michelle ;
Barrangou, Rodolphe .
ANNUAL REVIEW OF GENETICS, VOL 45, 2011, 45 :273-297
[3]  
Bibikova M, 2002, GENETICS, V161, P1169
[4]   Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations [J].
Boisson-Dernier, A ;
Chabaud, M ;
Garcia, F ;
Bécard, G ;
Rosenberg, C ;
Barker, DG .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2001, 14 (06) :695-700
[5]   CRISPR/Cas9-Mediated Genome Editing in Soybean Hairy Roots [J].
Cai, Yupeng ;
Chen, Li ;
Liu, Xiujie ;
Sun, Shi ;
Wu, Cunxiang ;
Jiang, Bingjun ;
Han, Tianfu ;
Hou, Wensheng .
PLOS ONE, 2015, 10 (08)
[6]   Characterization of Genomic Deletion Efficiency Mediated by Clustered Regularly Interspaced Palindromic Repeats (CRISPR)/Cas9 Nuclease System in Mammalian Cells [J].
Canver, Matthew C. ;
Bauer, Daniel E. ;
Dass, Abhishek ;
Yien, Yvette Y. ;
Chung, Jacky ;
Masuda, Takeshi ;
Maeda, Takahiro ;
Paw, Barry H. ;
Orkin, Stuart H. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (31) :21312-21324
[7]   Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease [J].
Cho, Seung Woo ;
Kim, Sojung ;
Kim, Jong Min ;
Kim, Jin-Soo .
NATURE BIOTECHNOLOGY, 2013, 31 (03) :230-232
[8]   Targeting DNA Double-Strand Breaks with TAL Effector Nucleases [J].
Christian, Michelle ;
Cermak, Tomas ;
Doyle, Erin L. ;
Schmidt, Clarice ;
Zhang, Feng ;
Hummel, Aaron ;
Bogdanove, Adam J. ;
Voytas, Daniel F. .
GENETICS, 2010, 186 (02) :757-U476
[9]   Multiplex Genome Engineering Using CRISPR/Cas Systems [J].
Cong, Le ;
Ran, F. Ann ;
Cox, David ;
Lin, Shuailiang ;
Barretto, Robert ;
Habib, Naomi ;
Hsu, Patrick D. ;
Wu, Xuebing ;
Jiang, Wenyan ;
Marraffini, Luciano A. ;
Zhang, Feng .
SCIENCE, 2013, 339 (6121) :819-823
[10]   Genome Engineering of Crops with Designer Nucleases [J].
Curtin, Shaun J. ;
Voytas, Daniel F. ;
Stupar, Robert M. .
PLANT GENOME, 2012, 5 (02) :42-50