Role of 2D and 3D defects on the reduction of LaNiO3 nanoparticles for catalysis

被引:27
|
作者
Singh, Sarika [1 ]
Prestat, Eric [2 ]
Huang, Liang-Feng [3 ]
Rondinelli, James M. [3 ]
Haigh, Sarah J. [2 ]
Rosen, Brian A. [1 ]
机构
[1] Tel Aviv Univ, Dept Mat Sci & Engn, 55 Haim Levanon St, IL-69987001 Ramat Aviv, Israel
[2] Univ Manchester, Sch Mat, Oxford Rd, Manchester M13 9PL, Lancs, England
[3] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
英国工程与自然科学研究理事会;
关键词
IN-SITU; PEROVSKITE; METHANE; CO2; PERFORMANCE; PARTICLES; PRECURSOR; CELL; CH4; FE;
D O I
10.1038/s41598-017-10703-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Solid phase crystallization offers an attractive route to synthesize Ni nanoparticles on a La2O3 support. These materials have shown great promise as catalysts for methane oxidation and similar reactions. Synthesis is achieved by the reduction of a LaNiO3 (LNO) precursor at high temperatures, but the reduction pathway can follow a variety of routes. Optimization of catalytic properties such as the long-term stability has been held back by a lack of understanding of the factors impacting the reduction pathway, and its strong influence on the structure of the resulting Ni/La2O3 catalyst. Here we show the first evidence of the importance of extended structural defects in the LNO precursor material (2D stacking faults and 3D inclusions) for determining the reaction pathway and therefore the properties of the final catalyst. Here we compare the crystallization of LNO nanoparticles via two different pathways using in-situ STEM, in-situ synchrotron XRD, and DFT electronic structure calculations. Control of extended defects is shown to be a key microstructure component for improving catalyst lifetimes.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] TRIANGULATION IN 2D AND 3D SPACE
    YVINEC, M
    GEOMETRY AND ROBOTICS, 1989, 391 : 275 - 291
  • [42] Image scanners: 2D and 3D
    Handley, R.
    Advanced Imaging, 2001, 16 (07) : 28 - 33
  • [43] 2D/3D switchable displays
    Jacobs, Adrian
    Mather, Jonathan
    Winlow, Robert
    Montgomery, David
    Jones, Graham
    Willis, Morgan
    Tillin, Martin
    Hill, Lyndon
    Khazova, Marina
    Stevenson, Heather
    Bourhill, Grant
    Shapu Giho/Sharp Technical Journal, 2003, (85): : 15 - 18
  • [44] 2D and 3D image processing
    2D- und 3D-Bildverarbeitung
    Materialpruefung/Materials Testing, 2001, 43 (05):
  • [45] 2D AND 3D CALCULATION OF FORCES
    BARTSCH, M
    WEILAND, T
    IEEE TRANSACTIONS ON MAGNETICS, 1994, 30 (05) : 3467 - 3470
  • [46] Integrated 2D and 3D mammography
    Sumkin, Jules H.
    LANCET ONCOLOGY, 2013, 14 (08): : E292 - E293
  • [47] Discretization in 2D and 3D orders
    Couprie, M
    Bertrand, G
    Kenmochi, Y
    GRAPHICAL MODELS, 2003, 65 (1-3) : 77 - 91
  • [48] Comparing 2D and 3D Imaging
    Ballantyne, Lauren
    JOURNAL OF VISUAL COMMUNICATION IN MEDICINE, 2011, 34 (03) : 138 - 141
  • [49] 2D and 3D Roughness Characterization
    Magsipoc, Earl
    Zhao, Qi
    Grasselli, Giovanni
    ROCK MECHANICS AND ROCK ENGINEERING, 2020, 53 (03) : 1495 - 1519
  • [50] 2D AND 3D PERSPECTIVE TRANSFORMATIONS
    KORNEL, K
    COMPUTERS & GRAPHICS, 1990, 14 (01) : 117 - 124