Nonparametric estimation of a function from noiseless observations at random points

被引:4
|
作者
Bauer, Benedikt [1 ]
Devroye, Luc [2 ]
Kohler, Michael [1 ]
Krzyak, Adam [3 ]
Walk, Harro [4 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, Schlossgartenstr 7, D-64289 Darmstadt, Germany
[2] McGill Univ, Sch Comp Sci, 3450 Rue Univ, Montreal, PQ H3A 2K6, Canada
[3] Concordia Univ, Dept Comp Sci & Software Engn, 1455 Bout Maisonneuve Ouest, Montreal, PQ H3G 1M8, Canada
[4] Univ Stuttgart, Fachbereich Math, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
Multivariate scattered data approximation; Rate of convergence; Supremum norm error; OPTIMAL GLOBAL RATES; SCATTERED DATA INTERPOLATION; RADIAL BASIS FUNCTIONS; APPROXIMATION; CONVERGENCE;
D O I
10.1016/j.jmva.2017.05.010
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we study the problem of estimating a function from n noiseless observations of function values at randomly chosen points. These points are independent copies of a random variable whose density is bounded away from zero on the unit cube and vanishes outside. The function to be estimated is assumed to be (p, C)-smooth, i.e., (roughly speaking) it is p times continuously differentiable. Our main results are that the supremum norm error of a suitably defined spline estimate is bounded in probability by {ln(n)/n}(p/d) for arbitrary p and d and that this rate of convergence is optimal in minimax sense. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:93 / 104
页数:12
相关论文
共 50 条