A C1 virtual element method for an elliptic distributed optimal control problem with pointwise state constraints

被引:18
作者
Brenner, Susanne C. [1 ,2 ]
Sung, Li-Yeng [1 ,2 ]
Tan, Zhiyu [2 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会;
关键词
Elliptic distributed optimal control problems; pointwise state constraints; C-1 virtual element method; INTERIOR PENALTY METHODS; PRIMAL-DUAL STRATEGY; APPROXIMATION; CONVERGENCE; REGULARITY; DOMAINS;
D O I
10.1142/S0218202521500640
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We design and analyze a C-1 virtual element method for an elliptic distributed optimal control problem with pointwise state constraints. Theoretical estimates and corroborating numerical results are presented.
引用
收藏
页码:2887 / 2906
页数:20
相关论文
共 52 条
[1]  
Adams Robert A., 2003, Sobolev Space, V140
[2]   The fully nonconforming virtual element method for biharmonic problems [J].
Antonietti, P. F. ;
Manzini, G. ;
Verani, M. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (02) :387-407
[3]   A C1 VIRTUAL ELEMENT METHOD FOR THE CAHN-HILLIARD EQUATION WITH POLYGONAL MESHES [J].
Antonietti, P. F. ;
Da Veiga, L. Beirao ;
Scacchi, S. ;
Verani, M. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (01) :34-56
[4]   Primal-dual strategy for constrained optimal control problems [J].
Bergounioux, M ;
Ito, K ;
Kunisch, K .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (04) :1176-1194
[5]   Primal-dual strategy for state-constrained optimal control problems [J].
Bergounioux, M ;
Kunisch, K .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2002, 22 (02) :193-224
[6]  
Blum H., 1980, Math. Methods Appl. Sci., V2, P556, DOI [10.1002/mma.1670020416, DOI 10.1002/MMA.1670020416]
[7]  
Boffi D, 2013, MIXED FINITE ELEMENT, V44
[8]   ESTIMATION OF LINEAR FUNCTIONALS ON SOBOLEV SPACES WITH APPLICATION TO FOURIER TRANSFORMS AND SPLINE INTERPOLATION [J].
BRAMBLE, JH ;
HILBERT, SR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1970, 7 (01) :112-&
[9]   P1 finite element methods for an elliptic state-constrained distributed optimal control problem with Neumann boundary conditions [J].
Brenner, S. C. ;
Oh, M. ;
Sung, L-Y .
RESULTS IN APPLIED MATHEMATICS, 2020, 8
[10]  
Brenner S.C., 2020, ADV MATHEMATCAL SCI, V21, P3