Dimensionality Reduction of Hybrid Data Using Mutual Information-Based Unsupervised Feature Transformation: with Application on Intrusion Detection

被引:0
作者
Wei, Min [1 ]
Chan, Rosa H. M. [1 ]
机构
[1] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
来源
PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN) | 2015年
关键词
feature transformation; hybrid data; dimensionality reduction; mutual information;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Conventional dimensionality reduction methods are not applicable for hybrid data as they require the data set to be pure numerical. In this study, the mutual information (MI)-based unsupervised feature transformation (UFT) method which can transform symbolic features into numerical features without information loss was integrated with principle component analysis (PCA) for dimensionality reduction of hybrid data. The NSL-KDD data set for internet intrusion detection was used to verify this integrated UFT+PCA method. The experimental results show that, the UFT+PCA can reduce the dimension and improve the classification accuracies of hybrid data effectively.
引用
收藏
页码:1108 / 1111
页数:4
相关论文
共 12 条
[1]  
[Anonymous], ANN PROBABILITY
[2]  
[Anonymous], 1993, PROGRAMS MACHINE LEA, DOI DOI 10.1016/C2009-0-27846-9
[3]  
[Anonymous], 1995, Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence
[4]  
[Anonymous], P 5 C NEUR NETW THEI
[5]  
[Anonymous], 2012, Machine Learning: The Art and Science of Algorithms That Make Sense of Data
[6]  
[Anonymous], 2009, P 2 IEEE INT C COMP
[7]  
[Anonymous], 2011, Acm T. Intel. Syst. Tec., DOI DOI 10.1145/1961189.1961199
[8]  
Breiman L., 2017, Classification and Regression Trees, DOI [10.1201/9781315139470, DOI 10.1201/9781315139470]
[9]   Conversion methods for symbolic features: A comparison applied to an intrusion detection problem [J].
Hernandez-Pereira, E. ;
Suarez-Romero, J. A. ;
Fontenla-Romero, O. ;
Alonso-Betanzos, A. .
EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (07) :10612-10617
[10]  
Lichman Moshe, 2013, UCI machine learning repository