A Nonconvex Approach for Exact and Efficient Multichannel Sparse Blind Deconvolution

被引:0
作者
Qu, Qing [1 ]
Li, Xiao [2 ]
Zhu, Zhihui [3 ,4 ]
机构
[1] NYU, New York, NY 10003 USA
[2] Chinese Univ Hong Kong, Hong Kong, Peoples R China
[3] Johns Hopkins Univ, Baltimore, MD 21218 USA
[4] Univ Denver, Dept Elect & Comp Engn, Denver, CO 80208 USA
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019) | 2019年 / 32卷
基金
美国国家科学基金会;
关键词
RECONSTRUCTION; CONVERGENCE; FMRI;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study the multi-channel sparse blind deconvolution (MCS-BD) problem, whose task is to simultaneously recover a kernel a and multiple sparse inputs {x(i)}(i=1)(p) from their circulant convolution y(i) = a circle star x(i) (i = 1, . . . , p). We formulate the task as a nonconvex optimization problem over the sphere. Under mild statistical assumptions of the data, we prove that the vanilla Riemannian gradient descent (RGD) method, with random initializations, provably recovers both the kernel a and the signals {x(i)}(i=1)(p) up to a signed shift ambiguity. In comparison with state-of-the-art results, our work shows significant improvements in terms of sample complexity and computational efficiency. Our theoretical results are corroborated by numerical experiments, which demonstrate superior performance of the proposed approach over the previous methods on both synthetic and real datasets.
引用
收藏
页数:12
相关论文
共 52 条
  • [1] Multichannel blind deconvolution and equalization using the natural gradient
    Amari, S
    Douglas, SC
    Cichocki, A
    Yang, HH
    [J]. FIRST IEEE SIGNAL PROCESSING WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS, 1997, : 101 - 104
  • [2] [Anonymous], 2018, ARXIV180909573
  • [3] [Anonymous], 1992, SPRINGER SERIES STAT, DOI DOI 10.1007/978-1-4612-4380-9_35
  • [4] [Anonymous], 2017, ARXIV171110467
  • [5] Bai Y., 2018, ARXIV181010702
  • [6] Imaging intracellular fluorescent proteins at nanometer resolution
    Betzig, Eric
    Patterson, George H.
    Sougrat, Rachid
    Lindwasser, O. Wolf
    Olenych, Scott
    Bonifacino, Juan S.
    Davidson, Michael W.
    Lippincott-Schwartz, Jennifer
    Hess, Harald F.
    [J]. SCIENCE, 2006, 313 (5793) : 1642 - 1645
  • [7] Boyd S., 2003, Lect. Notes EE392o, P2004
  • [8] Fast Convolutional Sparse Coding
    Bristow, Hilton
    Eriksson, Anders
    Lucey, Simon
    [J]. 2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 391 - 398
  • [9] WEAK SHARP MINIMA IN MATHEMATICAL-PROGRAMMING
    BURKE, JV
    FERRIS, MC
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (05) : 1340 - 1359
  • [10] Phase Retrieval via Wirtinger Flow: Theory and Algorithms
    Candes, Emmanuel J.
    Li, Xiaodong
    Soltanolkotabi, Mahdi
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (04) : 1985 - 2007