FINITE VOLUME DISCRETIZATIONS FOR EIGENVALUE PROBLEMS WITH APPLICATIONS TO ELECTRONIC STRUCTURE CALCULATIONS

被引:18
|
作者
Dai, Xiaoying [1 ]
Gong, Xingao [2 ]
Yang, Zhang [1 ]
Zhang, Dier [2 ]
Zhou, Aihui [1 ]
机构
[1] Chinese Acad Sci, State Key Lab Sci & Engn Comp, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
基金
国家高技术研究发展计划(863计划); 美国国家科学基金会;
关键词
eigenvalue; electronic structure; finite element; finite volume; high order; symmetric; DENSITY-FUNCTIONAL THEORY; TOTAL-ENERGY CALCULATIONS; GROUND-STATE SOLUTION; ELEMENT-METHOD; DIMENSIONAL APPROXIMATIONS; SCHRODINGER-OPERATORS; ALGORITHMS; COMPUTATIONS; CONVERGENCE; EQUATIONS;
D O I
10.1137/090757046
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
To introduce the finite volume method to electronic structure calculations, we study a symmetric finite volume scheme for a class of linear eigenvalue problems and present a priori error analysis of the finite volume eigenpair approximations. Based on finite volume-finite element coupled discretizations, in particular, we design several higher order approximate schemes. We also demonstrate a series of numerical experiments in electronic structure calculations that illustrate the effectiveness of our finite volume discretization approaches.
引用
收藏
页码:208 / 240
页数:33
相关论文
共 50 条
  • [41] The orbital minimization method for electronic structure calculations with finite-range atomic basis sets
    Corsetti, Fabiano
    COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (03) : 873 - 883
  • [42] Nonlinear approximations for electronic structure calculations
    Beylkin, G.
    Haut, T. S.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2158):
  • [43] A comparison of accelerators for direct energy minimization in electronic structure calculations
    Baarman, Kurt
    VandeVondele, Joost
    JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (24)
  • [44] A priori and a posteriori analysis of finite volume discretizations of Darcy’s equations
    Y. Achdou
    C. Bernardi
    F. Coquel
    Numerische Mathematik, 2003, 96 : 17 - 42
  • [45] An efficient hierarchical preconditioner for quadratic discretizations of finite element problems
    El maliki, A.
    Guenette, R.
    Fortin, M.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2011, 18 (05) : 789 - 803
  • [46] ON THE INACCURACIES OF SOME FINITE VOLUME DISCRETIZATIONS OF THE LINEARIZED SHALLOW WATER PROBLEM
    Faure, S.
    Petcu, M.
    Temam, R.
    Tribbia, J.
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2011, 8 (03) : 518 - 541
  • [47] Adaptive mesh refinement for finite-volume discretizations with scalene triangles
    Gonzaga de Oliveira, Sanderson L.
    Chagas, Guilherme Oliveira
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2015 COMPUTATIONAL SCIENCE AT THE GATES OF NATURE, 2015, 51 : 239 - 245
  • [48] Inexact restoration method for minimization problems arising in electronic structure calculations
    Francisco, Juliano B.
    Martinez, J. M.
    Martinez, Leandro
    Pisnitchenko, Feodor
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2011, 50 (03) : 555 - 590
  • [49] A MULTILEVEL CORRECTION TYPE OF ADAPTIVE FINITE ELEMENT METHOD FOR EIGENVALUE PROBLEMS
    Hong, Qichen
    Xie, Hehu
    Xu, Fei
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (06) : A4208 - A4235
  • [50] ON SMOOTH LU DECOMPOSITIONS WITH APPLICATIONS TO SOLUTIONS OF NONLINEAR EIGENVALUE PROBLEMS
    Dai, Hua
    Bai, Zhong-Zhi
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2010, 28 (06) : 745 - 766